Luke's College Algebra Notes

Exam 1

2.1 Equations
2.2 Applied Problems
2.3 Quadratic Equations
2.4 Complex Numbers
2.5 Other Types of Equations
2.6 Inequalities
2.7 More on Inequalities

Exam 2

3.1 Rectangular Coordinate Systems
3.2 Graphs of Equations
3.3 Lines
3.4 Definition of Function
3.5 Graph of Functions
3.6 Quadratic Functions
3.7 Operations of Functions
3.9 Variation

Exam 3

4.1 Polynomial Functions of Degree Greater Than 2
4.2 Properties of Division
4.3 Zeros of Polynomial
4.4 Complex and Rational Zeros of Polynomials
5.1 Exponential Functions
5.2 The Natural Exponential Function
5.3 Logarithmic Functions
5.4 Properties of Logarithms
5.5 Exponential and Logarithmic Equations

Exam 4

9.1 Systems of Equations
9.2 Systems of Linear Equations in Two Variables
9.5 Systems of Linear Equations in More than Two Variables
9.8 Determinants
9.9 Properties of Determinates
10.1 Infinite Sequences and Summation Notation
10.2 Arithmetic Sequences
10.3 Geometric Sequences
10.5 The Binomial Theorem
algebra 2.1 Equations
Linear Equations er $\begin{aligned} & 3 x+2=5 \text { (one variable, first power) } \\ & 3 x=3 \quad x=1\end{aligned}$
can have conditional -one solution $2 x+2=5 x-15 \quad-3 x=-17 x=\frac{17}{3}$ contradiction - no solution, $2 x+8=2(x-5) \quad 8=10 \mathrm{~F}$ Msinbico

solve for $x \quad \frac{1}{2 x+1}=\frac{4}{8 x-4} \quad \frac{1}{2 x+1}=\frac{4}{x(2 x,-1)} \quad \frac{1}{2 x-1}=\frac{1}{2 x-1}$ (identity \mathbb{R} axcap $+\frac{1}{2}$
Solve for $x \quad \frac{9 x}{3 x-1}=2+\frac{3}{x-1} \quad 9 x=6 x-2+3 \quad 3 x=1 \quad x=\frac{1}{3} \quad$ fro solution
$x \neq 3 \quad$ Solve for $x \quad \frac{2}{x-3} \cdot \frac{5}{3}=-1 \quad \frac{2}{x-3}-\frac{5}{1(x-3)}=-1 \quad \frac{2}{x \cdot 3}+\frac{5}{x-3}=-1 \quad 7=-x+3 \quad x=-4$
solve for $x \quad 4\left(8+3 x+1.7=0.5 \quad 32+12 x+1.7 \pm 8.5 \quad 120 x+337=85 \quad=-\frac{21}{10}\right.$
$y \neq 2$
Solve for $\frac{2}{y^{2}-4}-\frac{1}{y-2}=\frac{3}{y+2}$ (y+2) $(y \cdot 2)\left[\frac{2}{y^{2}-4}-\frac{1}{y-2}\right]=\frac{3}{y-2}(y+2)(y-2)$

$$
2-1(y+2)=3(y-2) \quad 2 y-2=3 y-6 \quad 6=4 y \quad y^{2} / 2
$$

algebra 2.1 cont.
Formulas
solve for h in

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& \frac{v}{\pi r^{2}}=\frac{1}{3} h \\
& h=\frac{3 v}{m r^{2}}
\end{aligned}
$$

solve for i

$$
R=\frac{v}{T}
$$

$$
I=\frac{V}{R}
$$

solve for p

$$
\begin{aligned}
& A=P+P r t \\
& A=P(1+r t) \\
& \frac{A}{1+r}=P \\
& P=\frac{A}{1+r t}
\end{aligned}
$$

solve fork

$$
\begin{gathered}
\frac{1}{f}+\frac{1}{p}=\frac{1}{q} \quad f p q\left(\frac{1}{f}+\frac{1}{p}\right)=\frac{1}{g}\left(f_{p q}\right) \\
p q+f q=f_{p} \\
q(p+f)=f_{p} \\
q=\frac{f p}{p+1 f}
\end{gathered}
$$

solve for F

$$
\begin{aligned}
& C=\frac{5}{5}(F-32) \\
& C=F-32 \\
& F_{5}=F+32=F
\end{aligned}
$$

$$
\begin{array}{|l}
(x+5)^{2}+3=(x-2)^{2} \\
x^{2}+10 x+25+3=x^{2}-4 x+4 \\
14 x=-24 \\
x=-\frac{12}{7}
\end{array}
$$

A Simple Guideline for Problem Solving in One Variable

1. Read through the problem and make sure you understand what it is asking.
2. Draw a picture where applicable.
3. Declare a variable (x, or something) for the thing you are trying to find.
4. Set up an equation using the information you have been given (you can almost guarantee that everything that has been given must be used somewhere).
5. Solve the equation for the variable.
6. Does your answer make sense? Check your answer by plugging it back in.

Ex: A student in Calculus has test scores of 72, 84,90, and 78. What score on the next test will give the student an average of $82 ?$

$$
\begin{aligned}
& \text { give the student an average of 822 } \\
& \text { let } x=5^{\text {th }} \text { tot } 5 \operatorname{cove} \\
& \frac{72+84+90+78+x}{5}=82 \quad \text { (6) }\left(\frac{324+x}{8}\right)=(82) 5 \quad 324+x=410 \quad x=86
\end{aligned}
$$

Ex: Before the final exam, Sara has test scores of 71, 79. 82,76, and 84. If the final exam counts as $1 / 3$ of her grade, what does she have to get in order to have a 75 average in the class?

$$
\begin{array}{ll}
\text { let } x=\text { final exar grade } \\
\frac{71+79+82+76+84}{5}=78.4 \text { test average } & 2 / 3(78.4)+1 / 3 x=75 \\
& 3(23)(78.4)+(3) \frac{1}{3} x=75(3) \\
& 156.8+x=225 \\
x=68.2
\end{array}
$$

Ex: Greg wants to invest $\$ 10,000$ in a simple interest account. The bank he's looking into has an interest rate of 2.5%. Will he make over $\$ 600$ in interest after 2 years?
(Simple Interest Formula: I = Pit)

$$
\begin{array}{ll}
P=\$ 10,000 & I=50000 \cdot(.025) \cdot 2 \\
r=.025 & I=500 \\
t=2 & m 0
\end{array}
$$

Ex: Cindy's take home pay monthly is $\$ 1450$, after 42% of the gross pay is deducted for taxes, savings, and benefits. How much is her gross monthly pay?
net $=1145042 \%$ deducted gross monthly pay? \quad let x gross monthly pay

$$
\begin{aligned}
x-.42 x & =1400 \\
58 x & =1400 \\
x & =2500
\end{aligned}
$$

Ex: Tickets to a circus are $\$ 6$ for adults, $\$ 3$ for children. If there were 4000 people total and $\$ 17,400$ was collected, how many children went?
he $c=4$ of children 4000 people $\$ 13400$ collected bladults fehithem

$$
\begin{aligned}
3 \cdot c+6(4000-c) & =\$ 17400 \\
3 c+24000-6 c & =\$ 17400 \\
-6 c & =-6,600 \\
c & =2200
\end{aligned}
$$

Ex: (\#11 in book) In a certain medical test designed to measure carbohydrate tolerance, an adult drinks 7 oz of a 30% glucose solution. When the test is administered to a child, the glucose concentration must be decreased to 20%. How much 30% glucose solution and how much water should be used to prepare 7 oz of 20% glucose solution?

$$
\begin{aligned}
& 3 x=1.4 \\
& x=14 / 3 \text { oo of } 30 \% \text { solution } \\
& 7 \cdot \frac{14}{3}=\frac{73013}{}=3
\end{aligned}
$$

X Ex: Two runners are traveling in the same direction. The first started at 3:00 p.m. at 6 mph . The other started at 4:00 p.m. at 7 mph . How long before the second runner catches up with the first?

| Person | nate $/$ nouns $/$ miles |
| :--- | :--- | :--- | :--- | :--- |$<d=r . t$.

Ex: Two women, who are 224 m apart, start walking towards each other at $1.2 \mathrm{~m} / \mathrm{sec}$ and $1.8 \mathrm{~m} / \mathrm{sec}$ respectively at the same instant. When will they meet, and how far will each have

$$
224=35
$$

Ex: ($\# 27$ in the book) A large grain silo is to be constructed in the shape of a circular cylinder with a hemisphere attached to the top. The diameter of the silo is to be 30 ft , but the height is yet to be determined. Find the height h of the silo that will result in a capacity of $11,250\left(\mathrm{pi}_{\mathrm{i}} \mathrm{ft}^{3}\right.$. diane $W=30^{\prime}$ radive 15^{\prime} ital volume $=11,250 \pi+{ }^{\prime}+3$
volume of hemisphere + volume of cylinder $=11,250(\pi) \mathrm{ft}$'s

Ex: (\#30 in the book) With water from one hose, a swimming pool can be filled in 8 hours. A second, larger hose used alone can fill the pool in 5 hours. How long would it take to fill the pool if both hoses were used simultaneously?
let $t=$ time to fill pool wi buthuptioses

$1 / t$ ancout of pol filled by both roses in I how

$$
\begin{aligned}
& \frac{1}{8}+1 / 5=1 / \\
& 5 t+8 t=40 \\
& t=4013)
\end{aligned}
$$

$$
\begin{aligned}
& \left(2 / 3015^{3} \mathrm{ft}\right)+\left(\pi 15^{2} \mathrm{fth}\right)=11200 \mathrm{ft}{ }^{3} \\
& 2500 \pi \mathrm{ft}^{3}+h \pi 225 \mathrm{ft}^{2}=11,250 \mathrm{ft}^{3} \\
& h \cdot \pi \cdot 225 \mathrm{ft}=40000 \mathrm{ft}{ }^{3} \\
& h=40 \mathrm{ft} \\
& 40 \mathrm{ft}+15 \mathrm{ft}=55 \mathrm{ft} \text {, height } 616
\end{aligned}
$$

$$
\begin{aligned}
& \text { walked? } \\
& 1,2 \mathrm{~m} / \mathrm{s} \text { 안 } \\
& 1.8
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{x} \xrightarrow{6 \mathrm{mpns} 3 \mathrm{pm}} \\
& 6 t=7(t-1) \\
& 6 t=7 t-7
\end{aligned}
$$

Algebra 2.3 Quadratic Equations
standard form $a x^{2}+b x+c=0 \quad a \neq 0$
gerofactor theorem of $a \cdot b=0$ then either $a=0$ or $b=0$
Ex: Solve

$$
\begin{aligned}
& x^{2}-5 x-6=0 \\
& (x-6)(x+1)=0 \\
& x=6,-1
\end{aligned}
$$

ex.

$$
\begin{aligned}
& 16 x^{2}-9 \\
& 16 x^{2}-9=0 \\
& (4 x+3)(4 x-3)=0 \\
& x=-\frac{3 / 4}{4}, \frac{3}{4}
\end{aligned}
$$

Solve:

$$
\begin{gathered}
2 x(4 x+15)=27 \\
8 x^{2}+30 x-24=0 \\
(2 x+9)(4 x-3)=0 \\
x=-9 / 2,3 / 4
\end{gathered}
$$

Solve $x(x-5)=0$

$$
x=0,5
$$

Solve $\frac{2 x}{x+3}+\frac{5}{x}=4+\frac{18}{x^{2}+3 x} \quad x \neq 0,-3$

$$
\begin{aligned}
& x(x+3)\left(\frac{2 x}{x+3}+\frac{5}{x}\right)=\left(4+\frac{18}{x^{2}+34}\right) x(x+3) \\
& 2 x^{2}+5 x+15=4 x^{2}+12 x+18 \\
&-2 x^{2}-7 x-3=0 \\
& 2 x^{2}+7 x+3=0 \\
&(2 x+1)(x+3)=0 \\
& x=-1 / 2,-3=-1 / 2
\end{aligned}
$$

Algebra 2.3 cont.
Completing the Square

1) $x^{2}+6 x \quad 6\left(\frac{1}{2}\right)=3 \quad 3^{2}=9$
$x^{2}+6 x+9 \quad(x+3)^{2}$
2) $x^{2}-10 x \quad 10\left(\frac{t}{2}\right)=55^{2}=25$
$x^{2}-10 x+25(x-5)^{2}$
3) $x^{2}-3 x \quad 3\left(\frac{1}{2}\right)=3 / 2\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
$x^{2}-3 x+9 / 4,\left(x-\frac{3}{2}\right)^{2}$
Solve by completing the square

$$
\begin{aligned}
x^{2}+8 x-11 & =0 \\
x^{2}+8 x \quad & =11 \quad 8\left(\frac{1}{2}\right)=4 \quad 4^{2}=16 \\
x^{2}+8 x+16 & =11+16 \\
(x+4)^{2} & =27 \\
\sqrt{(x+4)^{2}} & = \pm \sqrt{27} \\
x+4 & = \pm 3 \sqrt{3} \\
x & =4 \pm 3 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { On } 4 x^{2}-12 x-11=0 \text { (not: coefficient of } x^{2} \text { must be 1!) } \\
& x^{2}-3 x-114=0 \\
& x^{2}-3 x=11 / 4 \quad 3\left(\frac{1}{2}\right)=3 / 2\left(\frac{3}{2}\right)^{2}=9 / 4 \\
& x^{2}-3 x+\frac{9}{4}=\frac{11}{4}+\frac{9}{4} \\
& \left(x-\frac{3}{2}\right)^{2}=5 \\
& \sqrt{\left(x-\frac{3}{2}\right)^{2}}= \pm \sqrt{5} \\
& x-\frac{3}{2}= \pm \sqrt{5} \\
& x=3 / 2 \pm \sqrt{5}
\end{aligned}
$$

algebra 2.3 cont.
Quadratic Formula

$$
x=\frac{7 x \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve using the Quad Formuk
1.)

$$
\begin{array}{ll}
\frac{6 x^{2}-2=x}{} & x=-\frac{1 \pm}{-12} \frac{-1(6)-2)}{2(6)}=\frac{1 \pm \sqrt{1+\sqrt{8}}}{12}=\frac{1 \pm \sqrt{49}}{12} \\
6 x^{2}-y-2=0 & x=\frac{117}{12}=\frac{6}{12},-\frac{6}{12}=\frac{2}{3},-\frac{1}{2}
\end{array}
$$

$$
a=6 \quad b=-1 \quad c=-2
$$

2.)

$$
\begin{array}{ll}
\frac{3}{2} y^{2}-4 y-1=0 & y=\frac{-8 \pm \sqrt{-82}-4(3)(-2)}{2(3)}=\frac{8 \pm \sqrt{64+24}}{6}=\frac{8 \pm \sqrt{88}}{6} \\
3 y^{2}-8 y-2=0 & \frac{8 \pm 2 \sqrt{22}}{6}=\frac{4 \pm \sqrt{22}}{3}
\end{array}
$$

$$
a=3 \quad b=-8 \quad c=-2
$$

B)

$$
\begin{aligned}
& 100 x^{2}-220 x-879=0 \text { (ilia problem- - solve by completing the square) } \\
& \frac{100 x^{2}}{100}-\frac{220 x}{100}-\frac{874}{100}=0 \\
& x^{2}-\frac{11}{5} x=\frac{879}{800} \quad \frac{11}{5}\left(\frac{1}{2}\right)=\frac{11}{10} \quad\left(\frac{11}{10}\right)^{2}=\frac{121}{100} \\
& x^{2}-\frac{11}{5} x+\frac{121}{100}=\frac{874}{100}+\frac{121}{100} \\
& \left(x-\frac{10}{10}\right)^{2}=\frac{1000}{100} \\
& \sqrt{\left(x-\frac{1}{16}\right)^{2}}= \pm \sqrt{10} \\
& \left(x-\frac{11}{10}\right)= \pm \sqrt{10} \\
& x=\frac{11}{10} \pm \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
a=3 \quad b=-8 \quad c:-2 \\
\frac{5 x}{x^{2}+9}=-1 & x=\frac{-5 \pm \sqrt{5 x}-4(x) 9}{2(1)}=\frac{-5 \pm \sqrt{25-36}}{2}=\frac{-5 x \sqrt{211}}{2}
\end{array} \\
& \left(x^{2}+4\right) \frac{5 x}{x^{2}+9}=-1\left(x^{2}+9\right) \\
& 5 x=-x^{2}-9 \\
& \text { for see } 2.3 \text { stop there) } \\
& x^{2}+5 x+9=0 \\
& a=1 \quad b=5 \quad c=9
\end{aligned}
$$

Algebra 2.4 Complex Hum
Complex Number $\rightarrow a+b j$
${ }^{0}$ real part imaginary part ex. $3+2 i,-1-i \sqrt{3}, 3$ (ok, no imaghary part), $-2 i$ (ok, no real $\#$)

$$
\text { add }(-7-4 i)+(5-2 i)=-2-6 i
$$

Mull $(-7-4 i) \cdot(5-2 i)=-35-20 i+44 i+8 i^{2}=-35-6 i+8 i^{2}=-35-61-8=-43-6 i$

$$
\begin{aligned}
2(3-5 i)^{2} & =2(3-5 i)(3-5 i)=2\left(9-15 i-15 i+5 i^{2}\right)=2\left(9-30 i+25 i^{2}\right)=18-60 i+50 i^{2} \\
& =18-60 i-50=-32-60 i
\end{aligned}
$$

Cycle , Pi

$$
\left\{\begin{array}{l}
i=\sqrt{4} \\
i^{3}=-1 \\
i^{3}=i \cdot i^{2}=-i \\
i^{4}=i^{2}+i^{2}=1
\end{array}\right.
$$

$i^{5}=\sqrt{7}$
(divid ely fou we remainder)
$i^{6}=-1$
$i^{7}=-i \quad$ Simplify $i^{23} \quad 4 \sqrt{23} \quad 5$ remainder 3
$i^{8}=1 \quad i^{23}=-i$
Complex Conjugates
Ex $2+7 i, 2-7 i$
or $-1-i \sqrt{2},-1+i \sqrt{2}$
Ex $-9 i, 9 i$
ex 10 , (no complex conjugate)
add $(2+7 i)+(2-7 i)=4$ (adding 2 complex conjugates gives anal \#) malt $(2+7 i) \cdot(2-7 i)=4-49 i^{2}=4+49=53$ (multiplying c.c. gives a neal \#)

Put in $a+b i$ format
EX $\frac{5}{2+i} \quad \frac{5}{2+i} \cdot \frac{5}{2-i}=\frac{5(2-i)}{4-i^{2}}=\frac{5(2-i)}{4+1}=\frac{5(2-i)}{5}=(2-i)$

Algebia 2.4 cont.
Simplify $\sqrt{-9}=\sqrt{-1} \cdot \sqrt{9}=i \cdot 3=3 i$
Simplify $-\sqrt{-50}=-\sqrt{-25} \sqrt{2}=-5 i \sqrt{2}$
Dolve using Quadic tic Frimula

$$
\begin{aligned}
& x^{2}+3 x+8=0 \quad \frac{-3 \pm \sqrt{3^{2}}-4(1)(8)}{2(1)}=\frac{-3 \pm \sqrt{9-33}}{2}=\frac{-3 \pm \sqrt{-23}}{2}=\frac{-3-1 \sqrt{23}}{2} \\
& a=1 b=3 \quad c=8
\end{aligned}
$$

Simplify $\sqrt{-9} \cdot \sqrt{-4}=3 i \cdot 2 i=6 i^{2}=-6$

$$
{\underset{1}{1+(x+7 y) i}}_{\text {seai }}^{\text {sel }}
$$

imasinery
Combine imagnary wimaginary it real utreal put so...

$$
\begin{array}{|l}
1=x \quad(\text { sin }(e x=1) \\
(x+7 y) i=22 i \\
k \\
1+7 y=22 \\
7 y=21 \\
y=3
\end{array}
$$

Algebra 2.5 Other Types of Equations
absolute Value Equations

$$
\begin{aligned}
& E x,|x|=4 \quad(x=4,-4 \\
& E x, 2|x-4|-12=0 \\
& 2|x-4|=12 \\
& |x-4|=6 \\
& x-1 \\
& x-4=6 \quad x-4=-6 \\
& x=10 \quad x=-2
\end{aligned}
$$

$=x|3 x-8|=-3$ Cain have arrogative w/ absolute value, no solution \varnothing
Grouping

$$
\begin{aligned}
& \text { ex. } 7 x^{3}-14 x^{2}-5 x+10=0 \\
& 7 x^{2}(x-2)-5(x-2)=0 \\
& \left(7 x^{2}-5\right)(x-2)=0 \\
& \left.x= \pm \sqrt{\frac{5}{7}}= \pm \frac{\sqrt{35}}{7}\right) x=2
\end{aligned}
$$

Rational Exponents

$$
\begin{aligned}
& e_{x} y^{3 / 2}=5 y \\
& y^{3 / 2}-5 y=0 \\
& y\left(y^{1 / 2}-5\right)=0 \\
& y=0 \quad y^{\frac{1}{2}-5}=0(y=25) \\
& \text { Ex } x^{3 / 2}=27 \\
& \frac{\left(x^{\frac{1}{3}}\right)^{2 / 3}}{\left.x^{6 / 6}-(27)^{2 / 2}\right)^{2}} \text { (raise both sidesty the recipnical of the value) } \\
& x^{6 / 6}=(\sqrt[3]{27})^{2} \\
& x=3^{2} \\
& x=9
\end{aligned}
$$

Algeria 2.5
Radical Equations

$$
\begin{array}{|lcl}
\sqrt{7-x}=x-5 & \sqrt{7-6}=6-5 & \sqrt{7-3}=3-5 \\
7-x=(x-5)^{2} & \sqrt{1}=1 \quad \sqrt{4}=-2 \\
7-x=x^{2}-10 x+25 & 2 \neq-2 \\
0=x^{2}-9 x+18 & \\
0=(x-6)(x-3) & \\
x=6,3 \text { rust check answers } & x=6 \\
& \\
\sqrt[3]{7 x-4}-2=0 & \sqrt[3]{7\left(\frac{2}{7}\right)-4}-2=0 \\
\sqrt[3]{7 x-4}=2 & \sqrt[3]{12-4}-2=0 \\
7 x-4=8 & \sqrt[3]{8}-2=0 \\
7 x=12 & 2 \cdot 2=0 \\
x=\frac{12}{7}
\end{array}
$$

Quadratic hike Equations
EX.

$$
\begin{aligned}
& \text { Ex. } x^{4}-25 x^{2}+144=0 \\
& \left(x^{2}-16\right)\left(x^{2}-9\right)=0 \\
& (x+4)(x-4)(x+3)(x-3)=0 \quad x=4,-4,3,-3 \\
& \text { EX } 6 w-23 w^{1 / 2}+20=0 \quad \text { net } w^{1 / 2}=x \quad x^{2}=w \\
& 6 x^{2}-23 x+20=0 \\
& (3 x-4)(2 x-5)=0 \\
& 3 x=4 \quad 2 x=5 \\
& x=4 / 3 \quad x=5 / 2 \Rightarrow w=\frac{16}{9}, \frac{25}{4}
\end{aligned}
$$

algebra 2.5
Differome of Juv Cukes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Sum of Jwo Cukos

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

EX Factor $8 x^{3}-27$

$$
\begin{aligned}
& a=2 x \quad b=3 \\
& (2 x-3)\left(4 x^{2}+6 x+9\right)
\end{aligned}
$$

Algebra 2.6 en equalities
Writs the following in interval notation

$$
\begin{array}{llll}
(1) x>5 & (5, \infty) & 0 & 4<x \\
(0) & (4, \infty) & \text { Dam as } x>4 \\
\hline 0 \leq 3 & (-\infty, 3] & (5) 5 \geq x>-1 & (-1,5] \\
0<x \leq 7 & (0,7] & &
\end{array}
$$

Write the following as an equality

$$
\begin{array}{llll}
\infty[-1, \infty) & x \geq-1 & (-\infty, 0) & x<0 \\
\hline(5,7) & 5<x<7 & {[-1,8)} & -1 \leq x<8
\end{array}
$$

$$
\text { Solve }-5 x+2 \leq-3 x+8
$$

$$
-2 x \leq 6 \quad / / \text { when dividing by a reg } \# \text {, switch signs }
$$

$$
x \geq-3 \quad[-3, \infty)
$$

Solve $-9 \leq \frac{1}{2} x-3<5$

$$
\begin{aligned}
& -6 \leq \frac{1}{2} x<8 \\
& -\frac{12 \leq x<16 \quad[-12,16)}{7}=1
\end{aligned}
$$

Solve $\frac{7}{x-3}>0$ when is it positive?

$$
\begin{aligned}
& x-3>0 \\
& \frac{x}{2} \quad(3, \infty)
\end{aligned}
$$

Solve $\frac{2}{5-x}<0$ when wo it negative

$$
\begin{array}{lll}
-x<-5 & x>5 \quad(5, \infty)
\end{array}
$$

solve $\frac{-5}{2 x+7}>0$ denominator nest he negative to mate answer positive

$$
\begin{aligned}
& \frac{1}{2} x+7<0 \\
& x<-\frac{\pi}{2}
\end{aligned} \quad\left(-\infty,-\frac{7}{2}\right)
$$

Algebra 2.6 enequalites cont.
absolute values in enogualities
general Rubs
$|x|<a$ then $-a<x<a$
$|x|>a$ then $x<a$ or $x>a$
Solve $|x| \geq 5 \quad x \leq-5 \quad x \geq 5 \quad(-\infty,-5] \cup[5, \infty)$
Solve $|x|<12 \quad-12<x<12 \quad(-12,12)$
Solve $|x|<-3 \quad$ mosolution \varnothing
Solve $|x|>-4 \quad(-\infty, \infty)$
solve $|6 x-1|<8$

$$
\begin{aligned}
& -8<6 x-1<8 \\
& \begin{array}{cc}
-\frac{7}{6}<x<9 / 6 & \left(-\frac{7}{4}, \frac{3}{2}\right) \\
\frac{4 x}{2} \leq-11 \\
& 4 x-9 \leq-22 \\
& x \leq-13 / 4
\end{array} \quad \begin{array}{c}
\frac{4 x-9}{2} \geq 11 \\
4 x-9 \geq 22 \\
\\
\\
\\
\end{array}
\end{aligned}
$$

Solve $1<|x|<5$ abs value wedgal between at's

$$
|x|>1^{\geqslant}|x|<5 \quad(-5,-1) \cup(1,5)
$$

Solve $-2 \leq|x| \leq 4$ sane as $0 \leq|x| \leq 4$

$$
[-4,4]
$$

Solve $3<|x| \leq 7$

$$
[-7,3) \cup(3,7]
$$

Solve $C=5 / 5(F-3 \lambda)$ what values of F correspond to the values of C, such that $30 \leq c \leq 40$?

$$
\begin{aligned}
& 30 \leq \frac{5}{4}(F-32) \leq 40 \\
& \left(\frac{9}{5}\right) 30 \leq 5(F-32) \leq 40(9 / 5) \\
& 54 \leq F-32 \leq 72 \\
& 86 \leq F \leq 104 \quad[86,104]
\end{aligned}
$$

Alghra 2.7 More on Mequalines
Inequalties of nequee 200 more Sive $x^{2}-6 x+890$ रnede the peothe

Soure $\begin{gathered}(x-1)(x+7)(5-x) \leq 0 \\ x \neq 1,-7,5(\text { (esrathes }) \\ (-7,1] \cup 5, \infty)\end{gathered}$

$$
(-7,1] \cup[5, \infty)
$$

s. $16 x^{3}$

Solve $\frac{x-3}{x^{2}-4 x-21} 20$

$$
\frac{x-3}{(x+3)(x-3)} \geqslant 0
$$

tist vodves 3,7,-3, but $x \neq-3,7$ (we parea/nut wactets,

$$
(-\infty,-6) \cup(0,6)^{0}
$$

$$
\begin{aligned}
& \text { Solve } \frac{-6 x}{x^{2}-36}>0 \text { 时 }(-3,3] \cup(7, \infty)
\end{aligned}
$$

$$
\begin{aligned}
& 6 x^{3}+12 x^{2}-7 x-111 \leq 0^{x^{\text {wer }}} \\
& 6 x^{2}(x+2)-7(x+2) \leq 0 \\
& (x+2)\left(6 x^{2}-7\right) \leq 0 \\
& x=-2, \pm \sqrt{\frac{3}{6}} \\
& \text { (}-\infty,-2] \cup\left[-V \frac{7}{5}, \sqrt{\frac{7}{2}}\right]
\end{aligned}
$$

Solve

$$
\frac{(x+11)^{2}(5+x)}{(x+3)^{2}(x-3)} \leq 0
$$

$x f-3,3$ estvulues $-4,5,3,3$
$(-\infty, 3) \cup[5, \infty)$
wot rey \#

$$
(-\infty,-3) \cup(-3,3) \cup(3, \infty)
$$

Summary of Inequalities
Absolute Value Inequalities
Isolate the absolute value first, and then follow either step one or two:

1. Less than symbol: less thand, set up an "and" compound inequality and solve.
2. Greater than symbol: greater than, set up an "or" compound inequality and solve.

Ex 1: Solve $|3 x-2|-7<0$

$$
\begin{array}{r}
13 x-21<7 \\
-7<3 x-2<7 \\
-5<3 x<9 \\
-5 / 3<x<3 \\
\left(-\frac{5}{3}, 3\right)
\end{array}
$$

Ex 3: Solve $|6 x+8|<-1$
no solution

Ex 2: Solve $|-2 x+9| \geq 1$

$$
\begin{gathered}
-2 x+9 \leq-1 \text { or }-2 x+9 \geq 1 \\
-2 x \leq-10 \quad-2 x \geq-8 \\
x \geq 5 \text { or } x \leq 4 \\
(-\infty, 4] \cup[5, \infty)
\end{gathered}
$$

Ex 4: Solve $|6 x+8|>-1$
same as $|6 x+8| \geq 0$

$$
\mathbb{R} \text { or }(-\infty, \infty)
$$

Linear Inequalities (highest power of x is 1)
Get x by itself on the left hand side. Your answer should be a single interval.

Ex 5: Solve $-3 x+2>x+10$

$$
\begin{gathered}
-4 x>8 \\
x<-2 \\
(-\infty,-2)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Ex 6: Solve }(2 x-3)(5 x+1) \leq 10 x^{2}-x \\
& 10 x^{2}+2 x-15 x-3 \leq 10 x^{2}-x \\
&-13 x \leq 3 \leq-x \\
&-12 x-3 \leq 0 \\
&-12 x \leq 3 \\
& x \geq-3 / 12 \\
& x \geq-1 / 4 \quad[-1 / 4, \infty)
\end{aligned}
$$

Inequalities of degree 2 or more
Get all terms on the left side (zero on the right), factor the left side, and set up a sign diagram! This is the only type of inequality you use a sign diagram for. You must be careful not to include values that make any denominators zero, and be sure to include values that make the numerator zero when you have \leq, or \geq.

Ex 7: Solve $x^{2}+12 x \geq-5 x+60$

$$
\begin{aligned}
& x^{2}+17 x-60 \geq 0 \\
& (x+20)(x-3) \geq 0
\end{aligned}
$$

test values ore $\cdots-20,3$

Ex 8: Solve $-3 x^{2}(x+2)(7-x) \leq 0$
test values one $0,-2,7$

$[-2,7]$

Ex 9: Solve $\frac{(x-3)\left(x^{2}-5 x+6\right)}{x^{2}+3 x-28} \geq 0$

$$
x=3,2 \quad \frac{(x-3)(x-3)(x-2)}{(x+7)(x-4)} \geqslant 0
$$

testrvaluos are $-7,2,3,4$

$$
(-7,2] \cup\{3\} \in(4, \infty)
$$

Ex 11: Solve $\frac{-(x+4)(3-x)}{(x-2)^{2}} \leq 0$
$x \neq 2$
$x=33^{4}$

$$
\frac{(x-3)(x+4)}{(x-2)^{2}} \leq 0
$$

test values $2,3,-4$

Ex 12: Solve $x^{2}(x+2)(7-x) \leq 0$
test aches $0,-2,7$

$$
(-\infty,-2] \cup\{0\} \cup[7, \infty)
$$

nu el 10016
Bonus (2 pts): The number of miles M that a certain compact car can travel on 1 gallon of gasoline is related to its speed v (in mi/hr) by: $M=-\frac{1}{30} v^{2}+\frac{5}{2} v$, for $0<v<70$. For what speeds will M be at least 45 ?

Luke Spence
Bone (Summary of Inequalities)
The number of miles M that a certain compact can can travel on I gallon of gasoline is relative to it's speed V in mph by $M=-\frac{1}{30} V^{2}+\frac{s}{2} V$, for $0<v<70$ 70 what speed will M te at least 45?

$$
\begin{array}{|l}
-\frac{1}{30} v^{2}+\frac{5}{2} v=M \\
-\frac{1}{30} v^{2}+\frac{5}{2} v \leq 45 \\
30\left(-\frac{1}{30} v^{2}+\frac{5}{2} v\right) \leq 45(30) \\
-v^{2}+75 v \leq 1350 \\
-v^{2}+75 v-1350 \leq 0 \\
v^{2}-75 v+1350 \geq 0 \\
(v-30)(v-45) \geq 0
\end{array}
$$

test values 30,45

$$
[30,45]
$$

algebra 3.1 dis tance e midpoint 70 mola
D. So tance Formula $d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Ex. Find the drotance between $(-2,5)$ © $(0,7)$

$$
d=\sqrt{(0.2)^{2}+(7.5)^{2}}=\sqrt{4+4}=(2 \sqrt{2})
$$

Ex. Find the dootance between $(-11,4) \&(3,-3)$

$$
d=\sqrt{(3-11)^{2}+(-3-4)^{2}}=\sqrt{14^{2}+(-7)^{2}}=\sqrt{196+49}=7 \sqrt{5}
$$

Midpoint formula $\quad M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Ex. Find the midpoint between $(-4.5) \&(2,-1)$

$$
\left.M=\left(\frac{-4+2}{2}, \frac{-5+1}{2}\right)=\left(\frac{-2}{2},-\frac{6}{2}\right)=(-1,-3)\right)
$$

Ex given $A(6,-4) \& B(-2,12)$ Find the point on the segment $A B$ that $\infty 3 / 4$ of the way from A to B,

$$
\begin{aligned}
& x \text { coordinate } x_{1}+3 / 4\left(x_{2}-x_{1}\right)=6+3 / 4(-2-6)=6+3 / 4(-8)=6-6=0 \\
& y \text { coordinate } y_{1}+3 / 4\left(y_{2}-y_{1}\right)=-4+\frac{3}{4}(12-4)=-4+\frac{3}{4}(16)=-4+12=8 \\
& (0,8)
\end{aligned}
$$

Ex Find a formula that expresses the fact that $P(x, y) \& 3$ units away from the origin.

$$
\begin{aligned}
& \sqrt{(x \cdot 0)^{2}+(y \cdot 0)^{2}}=3 \\
& \sqrt{x^{2}+y^{2}}=3 \\
& x^{2}+y^{2}=9
\end{aligned}
$$

algebra 3.1
Ex. Find all points on the y-ares that are 5 units away from $(3,4)$
$(0, y)$

$$
\begin{equation*}
\frac{\sqrt{6}}{\sqrt{(}} \tag{3,4}
\end{equation*}
$$

$$
\begin{aligned}
\sqrt{(0-3)^{2}+(y-4)^{2}} & =5 \\
\sqrt{(-3)^{2}+(y-4)^{2}} & =5 \\
9+(y-4)^{2} & =25
\end{aligned}
$$

$$
(y-4)^{2}=16
$$

$$
y-4= \pm 4
$$

$$
y=0,8 \quad(0,0),(0,8)
$$

EX Find all points on the x-ax's that are 7 units away from $(1,-3)$
(x, 0

$$
\begin{aligned}
& 7=\sqrt{(x-1)^{2}+(0-3)^{2}} \\
& 49=(x-1)^{2}+9 \\
& 40=(x-1)^{2} \\
& \pm \sqrt{40}=x-1 \\
& x=1 \pm 2 \sqrt{10} \quad(1+2 \sqrt{10}, 0),(1-2 \sqrt{10}, 0)
\end{aligned}
$$

Ex given $P_{1}(-5,1)$ find P_{2} such that $(3,-2)$ w the midpoint

$$
\begin{array}{cc}
\text { of } P_{1} \& P_{2} \\
M=\frac{x_{1}+x_{2}}{2}, y_{1}+y_{2} \\
M & \\
m_{1}=\frac{x_{1}+x_{2}}{2} & m_{y}=\frac{y_{1}+y_{2}}{2} \\
3=\frac{-5+x_{2}}{2} & -2=\frac{1+y_{2}}{2} \\
6=-5+x_{2} & -4=1+y_{2} \\
x_{2}=11 & y_{2}=-5
\end{array}
$$

Algebra 3.2 Graphs of Equations (arcles)

Graph loony Intercepts
ox graph $-3 x+4 y=12$

Quadratic Equations (Degree ocr move-ushaper via

$$
\text { Ex graph } y=x^{2}-x-2 \frac{x+y}{0.110}
$$

Cures
General Equation $\left[(x-h)^{2}+(y-k)^{2}=r^{2}\right.$
Ex Ind the center and acdius of $(x+3)^{2}+(y-5)^{2}=25$
center $(-3,5)$ radius $\sqrt{25}=5$
Ex Find the center and radius f $\left(x+\frac{1}{3}\right)^{2}+\left(y+\frac{7}{3}\right)^{2}=18$ center $\left(-\frac{2}{3},-\frac{2}{3}\right)$ radius $=\sqrt{18}=3 \sqrt{2}$
Ex White an equation for a circle $w /$ center $(1,-6)$ Inadive of 10

$$
(x-1)^{2}+(y+6)^{2}=100^{\circ}
$$

Dx Write an eQuation for a arcle of center $(-4,0)$ spadices of $5 \sqrt{3}$

$$
(x+4)^{2}+y^{2}=75
$$

© Find the equation facicle wendesints of diameter $(-2,5) \leq(4,5)$

$$
\begin{aligned}
& d=\sqrt{(4-2)^{2}+(5-5)^{2}}=\sqrt{3}=6 \quad \text { nadine }=6 / 2=3 \\
& \left.M=\left(\frac{-24}{2},\right)^{\frac{55}{2}}\right)=(1,5) \\
& (x-1)^{2}+(y-5)^{2}=9
\end{aligned}
$$

Ex And the equation fa cire $u /$ center $(-3,5)$ that is tangent to the x-axis

$$
(x+3)^{2}+(y-5)^{2}=25
$$

EX Find the equalson da cradle w/contu($(-2,7)$ that's tangent to tho y-axis

$$
\left(x^{0}+2\right)^{2}+(y-7)^{2}=4
$$

algebra 3.2
Ex Find the center \&radius of the following $x^{2}-6 x+y^{2}+4 y-7=0$

$$
\begin{aligned}
x^{2}-6 x+9+y^{2}+4 y+4 & =7+9+4 \\
(x+3)^{2}+(y+2)^{2} & =20
\end{aligned}
$$

center $(-3,-2)$ radives $=\sqrt{20}=2 \sqrt{5}$
Ex Find the center a radius of the following $x^{2}+10 x+y^{2}-3 y+2=0$

$$
\begin{aligned}
& x^{2}+10 x+25+y^{2}-3 y+\frac{9}{4}=-2+25+9 \\
& (x+5)^{2}+(y-3 / 2)^{2}=\frac{-8+100+9}{4}=\frac{101}{4}
\end{aligned}
$$

center $\left(-5, \frac{3}{2}\right)$ radius $=\sqrt{\frac{101}{4}}=\frac{\sqrt{601}}{2}$
Ex is the point $(3,5)$ inside, outside, or on the circle

$$
\begin{aligned}
(x-2)^{2}+(y-1)^{2} & =36 \\
(3-2)^{2}+(5-1)^{2} & =36 \\
1+16 & =36 \\
17 & <36 \text { less than meors inside the arele }
\end{aligned}
$$

Test for symmetry
Symmetry with respect to y-axis
Ex $y=3 x^{2}$ o (plug in $-x$, answer should be identrele)

$$
\begin{aligned}
& y=3(-x)^{2} \\
& y=3 x^{2}
\end{aligned} \text { Symmetrical w/y asp }
$$

Ex $y=5 x^{3}-x$

$$
\left.y=5(-x)^{3}--x\right)
$$

$y=-5 x^{3}+x$ not symmetrical w/ yaxis
Symmetry with respect to the origin

$$
7 \frac{(x, y)}{(-x,-y)} \text { plug in both } x \varepsilon y
$$

Algebra 3.3 Lives
Ex Find the slope letween $(-6,2) \&(5,-3)$

Lope Inter $E x$ hat's graph the equation $y=-\frac{3}{2} x+4$

$$
m=-3 / 2 \quad b=4
$$

$$
\begin{aligned}
& m=\text { slope } \\
& b=4 \dot{m e}
\end{aligned}
$$

Ex graph the equation $x=38 y=-2$ on the same axis
Point Slope What is the slope of $x=3$? Undefined)

$$
e_{1}=m(x-x)
$$

What to the slope of $y=-2,11=0$

$$
(-3,-2),(0,-2)=m=\frac{-\frac{2-2}{0-2}}{0-3}=\frac{0}{3}=0
$$

tended $7 n=$

$\begin{array}{l}A x+B y=C \\ A p o s, \text { no f fac) } \\ \\ \\ \\ \\ \\ \text { Ix Write an equation for a line with a slope } m=-2 \text { though }(c) \\ m=-2 \quad b=-5 \quad y=m x+b \quad y=-2 x-5\end{array}$

$$
m=1 / 2 \quad y=1 / 2 x+b \quad-1=1 / 2(6)+b-1=3+b \quad b=-4 \quad y=1 / 2 x-4)
$$

another way? $y-y_{1}=m(x-x) \quad y+1=m(x-6) \quad y=\frac{1}{2} x-4$
FX Write an equation for the line between $(-7,-2) \&(4,-1)$

$$
\begin{aligned}
& m=\frac{-1+2}{42}=\frac{71}{11} \\
& y=11 \\
& 11
\end{aligned}
$$

Write an equation for a horizontal line through $(8,-6) \quad y=-6$
White an equation for avesticle line through $(8,-6) \quad x=8$
algebra 3.3
Ex Ind the equation for a line parallel (11) to the y-axis thu $(3,5)$

$$
x=3 \quad \frac{5}{5}
$$

Ex Find the line perpendicular (1) to $x=4$ the $(5,2)$

$$
y=2
$$

Ex Find a genval/standard form Ran equation that's parallel to $y=2 / 3 x+7$ thu $(-3,1)$ (paneled lines have same $\sin 0$) $m=2 / 3$

$$
\begin{aligned}
& y=\frac{3}{3} x+3 \quad 1=\frac{2}{3}(3)+b \quad 1=-2+b \quad b=-3 \quad y=\frac{7}{3} x+3 \quad-\frac{2}{3} x+y=3 \\
& 2 x-3 y=-9 \quad \text { standard/geneval form }
\end{aligned}
$$

EX Find the general form of the equation perpendicular to $y=3 x-1$
thur $(5,-1)$ (perpendicular lives have posit/ /necipticel slopes)

$$
\begin{aligned}
& y=3 x-1 \quad 1 / \text { sure }=3 \quad 1 \text { slope }-1 / 3 \\
& y=-1 / 3 x+b \quad-1=-\frac{1}{3}(5)+b \quad-1=\frac{5}{3}+b \quad b=\frac{2}{3} \\
& y=-\frac{13}{3} x+2 / 3 \quad 1 / 3 x+y=2 / 3 \quad x+3 y=2
\end{aligned}
$$

Ex Find the equation for the peeper dicular bisector of the segment $A B$,

$$
\begin{aligned}
& A(4,2) \quad B(-2,10) \\
& M=\left(\frac{4-2}{2}, \frac{2+10}{2}\right)=(1,6) \\
& m=\frac{10.2}{2.4}=\frac{8}{-6}=-\frac{4}{3} \quad \perp m=3 / 4 \\
& y=\frac{3}{4} x+b \quad 6=\frac{3}{4}(1)+b \quad b=\frac{2}{4} \\
& y=3 / 4 x+\frac{21}{4}
\end{aligned}
$$

Algebra 3.4 Definition of Functions
Ex. $f(x)=3 x-2$ same as $y=3 x-2$ so $(x, f(x))$ same as (x, y)
Ex Find $f(-2)$ for $f(x)=x^{2}-3 x-5$

$$
f(-2)=(-2)^{2}-3(-2)-5 \quad 4+6-5=5 \quad f(-2)=5 \text { or }(-2,5)
$$

EX.
Thu so a function because it passe the verticle line test, ie Veaticle line prosesther it once sonly once

Find $f(0) \quad f(0)=-4$
Find $f(1) \quad f(1)=-2$
Find $f(3) \quad f(3)=0$
Ex Find $g\left(\frac{a}{2}\right)$ for $g(x)=x^{3}-3 x$

$$
\left.g(x)=x-3 x \quad a^{3}-\frac{a}{2}\right)^{2}-3\left(\frac{a}{2}\right) \quad \frac{a^{3}}{8}-\frac{3 a}{2} \quad g\left(\frac{a}{2}\right)=\frac{a^{3}-12 a}{8}
$$

Domain - is all possible x values that cantle used Range - is all possible y values that can be wed
Ex Find the domain of $f(x)=\frac{2}{x} \quad x \neq 0 \quad(-\infty, 0) \cup(0, \infty)$
Ex Find the domain of $f(x)=\frac{11}{3 x^{2}-2 x-5} \quad x \neq-1,5 / 3 \quad(-\infty,-1) \cup\left(-1, \frac{5}{3}\right) \cup(\xi, \infty)$
Ex Find the domain of $f(x)=\frac{\frac{3 x}{\sqrt{x-4}} \quad x-4>0 \quad x>4 \quad(4, \infty), ~}{x}$
$E x h(x)=3 x \sqrt{x-4} \quad x-4 \leq 0 \quad x \geq 4 \quad[4, \infty)$
Ex $f(x)=\frac{-7 x^{2}}{(x+3) \sqrt{2}-x} \quad x \neq-3 \quad 2-x>0 \quad-x>-2 \quad x<2 \quad(-\infty, 3) \cup(-3,2)$

Ex Find the dowaini i) $f(x)^{\frac{\sqrt{x-2}}{x+5}} \begin{array}{llll}x-220 \\ x \neq-5\end{array} \times 22 \quad[2, \infty)$
Ex Find the demain of $x^{2}-3 x+4 R$
EX Find the donain of $\frac{1}{x^{2}-3 x-4} \frac{1}{(x-4)(x+1)} \quad x \neq 4,-1 \quad(-\infty,-1) \cup(-1,4) \cup(4, \infty)$

Ex $f(x) \frac{9 x}{\sqrt{x^{3}-4 x}}=\frac{9 x}{\sqrt{x\left(x^{2}-2\right)}} \sqrt{\frac{9 x}{x(x \cdot 2)(x+2}} \quad x \neq 0,2,-2$	$x-2$
	$=\mid$

Ex $\quad g(x)=\sqrt{x^{3}-4 x} \quad[-2,0] \cup[2, \infty)$
Ex if $f(-2)=7$ and $f(4)=-2$, find the lineas fuructor.

$$
\begin{array}{ll}
(-2,7) \text { and }(4,-2) & m=\frac{-2}{4 \cdot-9}=-\frac{9}{6}=-\frac{3}{2} \\
y=m x+b & \\
y=-\frac{3}{2}(x)+b & y=-\frac{3}{2} x+4 \\
7=-\frac{3}{2}(-2)+b & f(x)=-\frac{3}{2} x+4 \text { efunction wotation } \\
7=3+b \quad b=4 &
\end{array}
$$

Remember:
For all $\sqrt{ }$ we don't wan't regaties!
7or $\sqrt{ }$ in the denominector, we doit want Oor ngatics!
algebra 3.5 Graphs of functions
Even Function $f(-x)=f(x) \quad y=x^{2}$ Odd Function $\quad f(-x)=-f(x) \quad y=x^{3}$

Determine. 6 whether the following are even, odd or neither

$$
\text { (a) } \begin{align*}
f(x) & =5 x^{3}+2 x \\
f(x) & =5(-x)^{3}+2(-x) \\
& =-5 x^{3}-2 x(-d d) \\
\text { (e) } f(x) & =3 x^{2}-5 x+1 \tag{even}\\
f(-x) & =3(-x)^{2}-5(-x)+1 \\
& 3 x^{2}+5 x+1 \text { neither }
\end{align*}
$$

$f(x)=1 x+3$
c) $f(x)=10$

$$
f(-x)=|-x|-3
$$

$$
f(-x)=10
$$

$$
=|x|-3 \sqrt{\cos -3}
$$

e) $f(x)=x^{4}-7 x^{2}$
f.)

$$
f(x)=(-x)^{4}-7(-x)^{2}
$$

$$
\begin{aligned}
& f(x)=x^{3}-2 x+3 \\
& f(-x)=(-x)^{3}-2(-x)+3 \\
&-x^{3}+2 x+3 \text { (} e \text { then }
\end{aligned}
$$

$$
=x^{4}-7 x^{2}
$$

Absolute Value Function
general graph: $y=|x|$

graph: $\quad y=|x|-5$ shift down 5
graph: $\quad y=|x-2|$ shiftnight 2
graph: $\quad y=|x+4|-1$ shift \quad le f +4 , down 1
Basic Parabola
General Graph:

Cubic
General graph $y=x^{3}$

$$
y=-x^{3}-1
$$

alg 3.5

$$
f(x)=-x^{2}+5
$$

Ex of the point $(2,7)$ is on the graph of f. Find the corresponding point on the graph of thefuretion.

$$
y=f(x-1)+5 \text { night } 1, \text { eq } 5(2,7) \Rightarrow(3,12)
$$

Ex of the point ($-2,3$) w on the graph of f. Find the converponding point on the graph of the function

$$
y=-f(x+4)-1 \text { left }+4 \text {, down } 1
$$

Ex sketch the graph of $y=-f(x+3)-1$
siren the graph of f below

reflect I flip about the x-axis

Algebra 3.6 Quadratics $a x^{2}+b x+c \quad$ vertex 2 minimum $]^{\text {maximum }}\left(\frac{-b}{2 a}, f\left(\frac{b}{2 a}\right)\right)$
axis of symmetry $A x=\frac{-b}{2 a}$
Ex gray h $f(x)=\frac{1}{2} x^{2}$

Ex Find the vertex \& x intercepts to the following:
a) $f(x)=x^{2}+5$

$$
\left(\frac{0}{2 a}, f(0)\right)=(0,5)
$$

b) $g(x)=-x^{2}+4 x$
 noxinterepts

$$
0=x^{2}+5
$$

$$
\begin{aligned}
& 0=x^{2}=-5 \\
& x= \pm \sqrt{-2 x-2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{x^{2}}{x-5} \\
& x n n=
\end{aligned}
$$

$$
x_{0}
$$

veter $\left(\frac{-4}{2(-1)}, f(2)\right)=(2,4)$

$$
\begin{array}{cc}
g(x)=-x^{2}+4 x & x \\
=-(x)^{2}+4(2) & 0=-x^{2}+4 x \\
=(-4)^{2} & 0=-x(y) \\
=(x=0,4-4)
\end{array}
$$

Standard Equation $y=a(x-h)^{2}+k$ rentex (h, k)
Ex Write $y=x^{2}+4 x+9$ into standard equation

$$
\begin{aligned}
& y=x^{2}+4 x+4+9-4 \\
& y=(x+2)^{2}+5 \\
& \text { vertex: }(-2,5)
\end{aligned}
$$

Write $y=-3 x^{2}-6 x-5$ into stendard equation

$$
y=-\frac{3\left(x^{2}+2 x+1\right)-5+3}{-3}
$$

vertex: $(-1,-2)$ down shaped poraterte, skinny

Algebra 3.6
White $y=2 x^{2}-10 x+7$ in to the otandardequation

$$
\begin{aligned}
& y=2\left(x^{2}-5 x+\frac{25}{2}\right)+7-\frac{25}{2} \\
& y=2(x-5 / 2)^{2}-\frac{11}{2}
\end{aligned}
$$

vertex ($5 / 2,-1 / 2$) up shaped, slimy
White $y=-\frac{3}{4} x^{2}+15 x-16$ into the standard equation

$$
\begin{aligned}
& y=-\frac{3}{4}\left(x^{2}-20 x+100\right)-16+75 \\
& y=-\frac{3}{4}(x-10)^{2}+59
\end{aligned}
$$

vertex $(10,59)$ open down, fat
Ex Find the standard equation for any parabolla w/vertex $(-6,3)$

$$
y=\underline{a}(x+6)^{2}+3
$$

Ex find the standard equation of the graph below: (assume $a=1$)

$$
\uparrow \rightarrow y=(x+4)^{2}-1
$$

Ex As above except don arxunce $a=1$

$$
\begin{aligned}
& y=a(x+0)^{2}-7 \\
& \begin{array}{l}
y=a x^{2}-7 \Rightarrow y=4 x^{2}-7 \\
9=a(2)^{2}-7
\end{array} \\
& 9=a(2)^{2}-7 \\
& 9=4 a-7 \\
& 16=4 a \\
& a=4
\end{aligned}
$$

algebra 3.6
Find the minimum value d the zeros of the function

$$
\begin{aligned}
& y=x^{2}+6 x+8 \\
& y=x^{2}+6 x+9+8-9 \\
& y=(x+3)^{2}-1 \\
& \text { vertex }(-3,-1) \quad \text { (Min value) } \\
& 0=x^{2}+6 x+8 \\
& 0=(x+4)(x+2) \\
& x=-4,-2 \quad \text { eros are }-4,-2
\end{aligned}
$$

Ex In object se projected vertically upon with a in initial velocity of $176 \mathrm{ft} / \mathrm{sec}$.
It's distance in feet above quad after t seen dos se given by the equation $s(t)=-16 t^{2}+176 t+96$
Find the maximum height of the object

$$
\begin{aligned}
s(t)= & -16\left(t^{2}-11 t+\frac{12}{4}\right)+96+484 \\
s(t)= & -16\left(t-\frac{11}{2}\right)^{2}+580 \\
& \text { rater }\left(\frac{12}{2}, 580\right) \text { (maximum value } \\
& \text { max height } 16580 \text { feet }
\end{aligned}
$$

algetiva 3.7 Qenations on Zunctions

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& ((f g)(x)=f(x)-g(x) \\
& (f(g)(x)=f(x) \cdot g(x) \\
& (f f g)(x)=f(x) / g(x) \quad g(x) \neq 0
\end{aligned}
$$

Ex, $f(x)=4 x^{3}-x+1 \quad g(x)=3 x^{2}+2$
a) $(f+g)(x) \quad 4 x^{3}-x+1+3 x^{2}+2=4 x^{3}+3 x^{2}-x+3$
b) (ftg) (2) $4(2)^{3}+3(2)^{2}-2+3=32+12-2+3=45$
c) $(f-g)(x) \quad 4 x^{3}-x+1-3 x^{2}-2=4 x^{3}-3 x^{2}-x-1$
d) $\left(f-\frac{-2}{}\right)(-2) \quad 4(-2)^{3}-3(-2)^{2}-(-2)-1=-32-12+2 \cdot 1=-43$
e) $(f * *)^{(x)}\left(4 x^{3}-x+1\right)\left(3 x^{2}+2\right)=12 x^{5}+5 x^{3}+3 x^{2}-2 x+2$

g) $(f / g)(1) \frac{4(1)^{2}-(\nu+1}{3(1)^{2}+2}=\frac{4-1+1}{5}=4 / 5$
het $f(x)=3 x-5 \quad g(x)=x^{2}-4$
Find $\left(f(g)(x)=\frac{3 x^{-5}}{x^{2}-4} \quad x \neq 2,-2\right.$
Find the donrain of $\left(\frac{f}{g}\right)(x)$, putin inteval notetion $(-,-,-2) \cup(-2,2) \cup(2, \infty)$
Find the domain of $\left(f_{6}\right)(x) \quad f(x)=\sqrt{x+3} \quad g(x)=\sqrt{x+3}$

$$
\left(\frac{f}{\delta}\right)(x)=\frac{\sqrt[7 x x]{\mid x+3}}{x+3>0 \quad x>-3<(-3, \infty)}
$$

Find Aedinain of $(f)(x) \quad f(x)=\sqrt{x+5} \quad g(x)=\sqrt{3-x}$

$$
\begin{aligned}
&(f)(x)=\frac{\sqrt{\sqrt{1+5}}}{\sqrt{3-x}} \rightarrow 3 \times 520 x \geq-5 \\
& \rightarrow 3-x>0-x>3 \quad x<3 \quad[-5,3)
\end{aligned}
$$

$\operatorname{Og} 3.7$
Find the domain $)(f g)(x) \quad f(x)=\sqrt{x+5} g(x)=\sqrt{3-x}$

$$
\left.\frac{(f g)(x)=(\sqrt{x-5})(\sqrt{3-x})}{(2 x+500 \times x=5}+x-x-3 \times 3 /[-5,3]\right)
$$

Find the dimain of $\left(f_{f}\right)(x) f(x)=\sqrt{(x+4} f(x)=\frac{7}{x}$

Composition I) Jumbicns

$$
(f \circ g)(x)=f(g(x)) \quad \text { its read composed o of }
$$

$E x$ Let $f(x)=x^{2}+2 x$

$$
g(x)=\sqrt{x}
$$

Fid $(f$ fog $)(x)$

$$
\begin{aligned}
& f(g(x))=(\sqrt{x})^{2}+2(\sqrt{x})=(x+2 \sqrt{x}) \\
& \text { Domain }=[0,-\infty)
\end{aligned}
$$

Fid $(g \circ f)(x)$

$$
\begin{aligned}
& \left.g(f(x))=\sqrt{x^{2}+2 x} \underset{\text { tot } 0,2}{\sqrt{x(x+2)}} \underset{-20}{20} \quad \text { (}-\infty, 2\right] \cup[\\
& \text { test } 0,2 \quad-20 \quad(-\infty,-2] \cup[0, \infty)
\end{aligned}
$$

so Let $f(x)=\frac{x}{2 x-x}$

$$
f(x)=\sqrt{x-2}
$$

Algebra 3.9 Variations
Variation - describes relationships between 20 more variables k-constant of proportionality

Direct variation - $y=k x$ ex $d=r t$ time ines, distame incr Indirect variation $\quad y=\frac{k}{x} \quad$ ex $\beta=\frac{k}{r} \quad$ press eve \uparrow, volumed \downarrow

Express a statement as a formula that involves u, v, and a constant of proportionality. also determine the value of K.

1) u is directly proportional to v, and if $v=9, u=18$

$$
u=k v \quad 18=k \cdot 9 \quad k=2 \quad u=2 v
$$

2) u sindived ${ }^{\prime}$ proportional to v, and $v=2, u=7$

$$
u=\frac{k}{v} \quad 7=\frac{k}{2} \quad k=14 \quad \alpha=\frac{1}{v}
$$

3) r varies directly with $s, ~ s$ indirectly with the square of t

$$
r=\frac{k t}{t^{2}} \quad 3=\frac{k \cdot 16}{4^{2}} \quad 3=\frac{16 k}{16} \quad R=3 \quad r=\frac{3 t}{t^{2}}
$$

41.) r varies directly with the square root of s, and indirectly with the sum of s \& t, find $k, r=10, s=4 t=8$
5.) r varies directly with the opposite of t and indirectly with the difference of $s t t, r=-5, s=2, t=-10$
6.) r varies directly w/ the square of the sum of $58 t$, and indirect y y w the cuke root of $t . \quad r=1, s=5, t=-8$

$$
r=\frac{k(5+t)^{2}}{\sqrt[3]{t}} \quad 1=\frac{k(5+-8)^{2}}{\sqrt[3]{-8}} \quad 1=\frac{9 k}{-2} \quad k=-3 / 5
$$

Algebra 4.1 Polynomials of Degree greater than 2
x^{3} poly w/a positive leading coefficient
x^{3} poly w/a negative leading coefficient x^{4} poly w/a positive leading coefficient 5 x^{4} poly wa negative leading coefficient \sim

$$
\begin{aligned}
& \text { Ex } f(x)=2 x(x-2)(x+3) \\
& \text { when so } f(x)>0 \quad 2 x(x-2)(x+3)>0 \\
& \text { when w } f(x)<0 \quad 2 x(x-2)(x+3)<0 \\
& f(x)>0 \quad(-3,0) \cup(2,-) \\
& f(x)<0 \quad(-\infty,-3) \cup(0,2)
\end{aligned}
$$

EX

$$
\begin{gathered}
f(x)=x^{4}-5 x^{3}-6 x^{2} \\
x^{2}\left(x^{2}-5 x-6\right) \\
x^{2}(x-6)(x+1) \\
\text { serves } 0,6,-1
\end{gathered}
$$

Glg 4.1
Intermeadiate V Glue Theorem

somewhere between 4 and 6, y must equal zen

Ex Does $f(x)=x^{5}+4 x^{4}-2 x^{3}+3 x-7$ have a zero between $1 \& 2$? Plug 1 and 2 in x and see whet happens

$$
\begin{aligned}
f(1) & =(1)^{5}+4(1)^{4}-2(1)^{3}+3(1)-7 \\
& =1+4-2+3-7=-1 \\
f(2) & =(2)^{5}+4(2)^{4}-2(2)^{3}+3(2)-7 \\
& =32+64-16+6-7=79 \quad(2,79) \quad \text { yes }
\end{aligned}
$$

If $f(x)=x^{3}-5 x^{2}-9 x+15 x$ has 5 for a zero, find 2 other jews

$$
0=(5)^{3}-5(5)^{2}-9(5)+15 k
$$

$$
0=125-125-45+15 k
$$

$$
K=3
$$

$$
f(x)=x^{3}-5 x^{2}-9 x+45
$$

$$
x^{2}(x-5)-9(x-5)
$$

$$
\left(x^{2}-9\right)(x-5)
$$

$(x+3)(x-3)(x-5)$ the other two zeros are $3 \mathrm{cand}-3$

$$
\begin{gathered}
E x(x)=x^{3}-5 x^{2} \\
x^{2}(x-5) \\
x^{2}+ \pm \\
\text { ant }-1+1+ \\
0
\end{gathered}
$$

Algebra 4.2 Properties of Division
hong Division

quotient: $3 x-5$ rem: -2
Synthetic division Divide $3 x^{2}-2 x-7$

$$
5 \text { rem: }-2, \frac{-11}{1} \frac{1-2-7}{3}-\frac{1}{3}-5-2
$$

hong Division Divide $5 x^{3}-2 x+4$

$$
\begin{aligned}
& \frac{5 x}{x^{2}+0 x-3 \sqrt{5 x^{3}+0 x^{2}-2 x+4}} \frac{-\left(5 x^{3}+0 x^{2}-15 x\right)}{13 x+4} \\
& 7 \quad
\end{aligned}
$$

Remainder theorm - If $f(x)$ so divided by $x \in$ then remainder at $f(c)$

Ex, $f(x)=3 x^{2}-2 x-7 \div x+1$ Use remainder then to findrom

$$
c=-1 \quad f(-1)=3(-1)^{2}-2(-1)-7=3+2-7=-2
$$

Ex. Use rem. the to find the nemainour when

$$
\begin{aligned}
& f(x)=2 x^{3}-5 x^{2}+4 x+9+f(x)=x-4 \\
& c=4 \quad f(4)=2(4)^{3}-5(4)^{2}+4(4)+9=128-80+16+9=73
\end{aligned}
$$

$\operatorname{alg} 4.2$
Factor Theorm of $x-c$ wa factor of $f(x)$ then $f(c)=0$ Ex Is $x-2$ a factor of $f(x)=x^{3}-8$?

$$
c=2 \quad f(2)=2^{3}-8 \quad f(2)=0 \quad \text { yes }
$$

Ex Is $x+5$ a factor $f(x)=3 x^{2}-7 x+25$?

$$
c=-5 \quad f(-5)=3(-5)^{2}-7(-5)+25=75+35+25=125 \mathrm{no}
$$

Ex Find apolynomial (x)) degree $3 \mathrm{w} /$ yews $0,-1,3$ with a leading coefficient of 2

$$
\begin{aligned}
f(x) & =2 x(x+1)(x-3) \\
& =2 x\left(x^{2}-2 x-3\right)=2 x^{3}-4 x^{2}-6 x
\end{aligned}
$$

F x Find any polynomial $f(x)$ of degrees $w /$ sews -4 , with multiplicity of 2 and 7

$$
f(x)=a(x+4)(x-7)
$$

EX Use ognthatic division to decide whether $x-3$ is a factor of $x^{4}-2 x^{2}+5$
$x-3 \infty$ not a factor

3) | 1 | 0 | -2 | 0 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| k | 3 | 9 | 21 | 63 |
| 1 | 3 | 7 | 21 | 68 |

Ex Find all values of K such that $f(x)=k x^{3}+x^{2}+k^{2} x+3 k^{2}+11$
so divisible ny $x+2$,

$$
\begin{array}{rl}
c=-2 & 0 \\
0 & =k(-2)^{3}+(-2)^{2}+k^{2}(-2)+3 k^{2}+11 \\
0 & =-8 k+4-2 k^{2}+3 x^{2}+11 \\
0 & =k^{2}-8 k+15 \\
0 & =(k-3)(k-5) \quad K=5,3
\end{array}
$$

algebra 4.3 zeros of Polynomials
Find the following polynomial sw/ their given conditions
(1) zeros: $4,1,-3 \quad f(-1)=100$

$$
\begin{aligned}
& f(x)=a(x-4)(x-1)(x+3) \\
& 100=a(-1-4)(-1-1)(-1+3) \\
& 100=a(-5)(-2)(2) \quad 100=20 a \quad a=5 \\
& f(x)=5(x-4)(x-1)(x+3) \quad \sqrt{ } \text { stop here on tents } \\
& f(x)=(5 x-20)\left(x^{2}+2 x-3\right) \\
& f(x)=5 x^{3}+10 x^{2}-15 x-20 x^{2}-40 x+60 \\
& f(x)=5 x^{3}-10 x^{2}-55 x+60 \quad \text { stop here fer iLion }
\end{aligned}
$$

10

$$
\begin{aligned}
& \text { zeros: } 4,2 i,-2 i \quad f(-1)=-125 \\
& f(x)=a(x-4)(x-2 i)(x+2 i) \\
& -125=a(-1-4)(-1-2 i)(-1+2 i) \\
& -125=a(-5)\left(1-4 i^{2}\right) \\
& -125=a(-5)(5) \\
& -125=-25 a \quad a=5 \\
& f(x)=5(x-4)(x-2 i)(x+2 i) \text { D Dtophere for tests, multiply for ibo }
\end{aligned}
$$

(3) zeros: $-3,-4$ w/multsplicing of 2 for both, leading coefficient $=-1$ $f(x)=-1(x+3)^{2}(x+4)^{2}$. Stop herefortests, multiply for item
(2) zeros: $-1,2$ both mulsplicit, i) 2,0 multipfait, of $3, f(2)=144$

$$
\begin{aligned}
& f(x)=a(x+1)^{2}(x-2)^{2} x^{3} \\
& 144=a(2+1)^{2}(2-1)^{2} 2^{3} \\
& 144=a(9)(1)(8) \\
& 144=72 a \quad a=2 \\
& f(x)=2 x^{3}(x+1)^{2}(x-1)^{2}
\end{aligned}
$$

alg 4,3 cont.
Find $f(x)$ of degrees 3, with it's graph below

$$
\begin{aligned}
& f(0)=48 \\
& f(x)=a(x-2)^{2}(x-6) \\
& 48=a(0-2)^{2}(0-6) \\
& 48=a(4)(-6) \\
& 48=-24 a \quad a=-2 \\
& f(x)=-2(x-2)^{2}(x-6)
\end{aligned}
$$

Find the zens of $f(x)$ state the multiplicity of each sew

$$
f(x)=-2 x^{3}\left(x^{2}-8 x+15\right)^{3}\left(x^{2}-9\right)^{2}
$$

Show that 3 se a zero of multiplicity of 2 , and express $f(x)$ as a product of unear factors. $f(x)=x^{4}-10 x^{3}+33 x^{2}-36 x$

Algebra 4.4 Comply \&Rational Jews of Polynomials
Ex Factor $x^{3}-8$ and find it's yews

$$
\begin{aligned}
& \left(x^{3}-8\right)=(x-2)\left(x^{2}+2 x+4\right) \quad x=\frac{-2 \pm \sqrt{4-4(1) \times 4)}}{2} \\
& \text { use quadratic formula } \\
& 3 \text { eros are } 2,-1 \pm i \sqrt{3} \\
& =\frac{-2 \pm \sqrt{4-16}}{2} \\
& =\frac{-2 \frac{2 \sqrt{-12}}{2}}{2} \\
& =\frac{-2 \pm 2 i \sqrt{3}}{2} \\
& =-1 \pm i \sqrt{3}
\end{aligned}
$$

Ex Find a poly n omial $f(x)$ of degree 4 that has all real coefficients, and has zeros $3+i,-2 i$ also $3-i, 2 i$ are zeros

$$
\begin{aligned}
& f(x)=(x-(3+i))(x-(3-i))(x+2 i)(x-2 i) \\
& f(x)=(x-3-i)(x-3+i)\left(x^{2}+4\right) \\
& f(x)=x^{2}-3 x+i x-3 x+9-3 i-i x+3 i-i^{2}\left(x^{2}+4\right) \\
& f(x)=x^{2}-6 x+10\left(x^{2}+4\right) \quad \text { stop here when i's are gone }
\end{aligned}
$$

Short cut $(x-(a+b i))(x-(a-b i)) \quad$ of $(x-(3+i))(x-(3-i))$

$$
\begin{array}{ll}
x^{2}-2 a x+a^{2}+b^{2} & x^{2}-2(3) x+9+1 \\
& x^{2}-6 x+10
\end{array}
$$

If a polynomial $f(x)$ of degree 2 has real coefficients and $-4+3 i$ sa zen, find $f(x)$

$$
\begin{aligned}
& \text { al so }-4-3 i-10 \text { a } 3 e 20 \\
& f(x)=(x-(-4+3 i))(x-(-4-3 i)) \\
& f(x)=x^{2}-2(-4) x+16+9 \\
& f(x)=x^{2}+8 x+25
\end{aligned}
$$

$\operatorname{alg} 4.4$ cont.
If polynomial $f(x)$ of degree 3 hap real coefficient, and zeros $-5,5+2 i$ also $5-2 i$ io a zeno

$$
\begin{aligned}
f(x) & =(x+5)(x-(5+2 i))(x-(5-2 i)) \\
& =(x+5)\left(x^{2}-2(5) x+25+4\right) \\
& =(x+5)\left(x^{2}-10 x+29\right)
\end{aligned}
$$

Ration al Root Therm of $f(x)=\frac{d}{2} x^{2}+x=10^{c}$
Then all possible national roots C / d,
Thus $c \infty$ a factor of -10 , and dis factor of 3 .
hist all possible values for $4 d$

$$
\begin{aligned}
& c= \pm 1, \pm 2, \pm 5, \pm 10 \\
& d= \pm 1, \pm 3 \\
& g_{c}= \pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{5}{3}, \pm \frac{10}{3}
\end{aligned}
$$

actual zens: $(3 x-5)(x+2) \quad x=5 / 3,-2$
Ex. Find the jews of $x^{3}-x^{2}-10 x-8$
hist all possible values of $c= \pm 1, \pm 2, \pm 4, \pm 8$
all possible values of $d= \pm 1$
all possible values of $c_{c}= \pm 1, \pm 2, \pm 4, \pm 8$

$$
\begin{array}{|cccccccc}
\text { Try 2 21 } 1 & -x-10 & -8 & \text { Try -2 } & -211 & -1 & -10 & -8 \\
& \downarrow & 2 & 2 & -16 & & 1 & -2 \\
\hline
\end{array}
$$

$\operatorname{agg} 4.4$ cont.
Ex Find all zero of $x^{4}+2 x^{3}-15 x^{2}-14 x+56$

$$
\begin{aligned}
& c= \pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56 \\
& d= \pm 1 \\
& c_{c}= \pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56
\end{aligned}
$$

thy 21 $1 \quad 2 \quad-15 \quad-14 \quad 56$

$$
\begin{aligned}
& \begin{array}{lllll}
1 & 2 & 8 & -14 & -56 \\
\hline 1 & 4 & -7 & -28 & 0
\end{array} \\
& (x-2)\left(x^{3}+4 x^{2}-7 x-20\right) \\
& \text { thy -4) } 1 \begin{array}{ccc}
4 & -7 & -28 \\
\hline
\end{array} \\
& \begin{array}{cccc}
1 & -4 & 0 & 28 \\
\hline 1 & 0 & -7
\end{array}
\end{aligned}
$$

$(x-2)(x+4)\left(x^{2}-7\right) \quad 3$ enos are $2,-4, \sqrt{7},-\sqrt{7}$

$$
(x-2)(x+4)(x+\sqrt{7})(x-\sqrt{7})
$$

algebra 5.1 Exponential Functions
Bases greater than 1-exponential growth $f(x)=a x \quad a>1$
ex. - population, bacterial growth, compound interest

Bases less than 1-exponential decay

$$
f(x)=a x \quad a<1
$$

ex-nadiv active decay

$q_{\text {graph }} f(x)=\left(\frac{1}{2}\right)^{x}$

Solve for x

$$
\begin{aligned}
2^{3 x} & =2^{-7 x-5} \\
3 x & =-7 x-5 \\
10 x & =-5 \\
x & =-1 / 2
\end{aligned}
$$

(2)

$$
\begin{array}{ll}
3^{2 x+3}=3^{x^{2}} & 9^{x^{2}}=3^{3 x+2}<(\text { Base } \\
2 x+3=x^{2} & \left.\left(3^{2}\right)^{2}\right)^{2}-3^{3 x+2} \\
x^{2}-2 x-3=0 & 3^{2 x^{2}}=3^{3 x+2} \\
(x+1)(x-3)=0 & 2 x^{2}=3 x+2 \\
x=-1,3 & 2 x^{2}-3 x-2=0 \\
& (2 x+1)(x-2)=0 \\
& x=-1 / 2,2
\end{array}
$$ same

alg 5.1
(4) $4^{x} \cdot\left(\frac{1}{2}\right)^{3-2 x}=8\left(2^{x}\right)^{2} \quad$ nemember, the bases must be $\left(2^{2}\right)^{x} \cdot\left(2^{-1}\right)^{3-2 x}=2^{3}\left(2^{2 x}\right)$ the same

$$
\begin{gathered}
2^{2 x} \cdot 2^{-3-2 x}=2^{3} \cdot 2^{2 x} \\
2^{4 x-3}=2^{3+2 x} \\
4 x-3=3+2 x \\
2 x=6 \\
x=3
\end{gathered}
$$

Ex Find an exponential function of the form $f(x)=b a^{x}$ given y-int 8 , and $P(3,1)$

$$
\begin{aligned}
& y \text {-int } 8=(0,8) \\
& f(x)=b a^{x} \text { and } f(x)=b a^{x} \\
& 8=b a^{\circ} \\
& 1=8 a^{3} \\
& 8=b .1 \\
& b=8 \\
& a^{3}=\frac{1}{8} \\
& a=\sqrt[3]{1 / 8} \\
& a=\frac{1}{2}
\end{aligned}
$$

Algebra 5.2 The Natural Exponential Function
Base e ≈ 2.71828
$\left(1+\frac{1}{n}\right)^{n}$ as $n \rightarrow \infty\left(1+\frac{1}{n}\right)^{n}$ approaches

Continuously Compound Interest $A=P e^{r t}$ ax you are investing 30,000 over byear w/7\% interest compounded continual. Find the amount in your account at the encl of 6 years.

$$
\begin{aligned}
& A=20,000 e^{(.07)(6)} \\
& A=20,000 e^{.42} \\
& A=20,000(1,52196) \\
& A=\$ 30,439 .^{23}
\end{aligned}
$$

haw of Growth on Decay $g(t)=6 \cdot e^{r t} q$-imitalquantsty ex Population of the US in 1980 uasapX. 227 million and has grown contirwoly at $0,7 \%$, per year.
Predict the population in 2010 if the trend continues.

$$
\begin{aligned}
q(t) & =q \cdot e^{r t} \\
q(30)^{0} & =227 \cdot e^{(.007)(30)} \\
& =227 e^{.21} \\
& =227(1.233678) \\
& =280 \text { million }
\end{aligned}
$$

algebra 5,2

Solve for x
10

$$
\begin{aligned}
& e^{x^{2}}=e^{7 x-12} \\
& x^{2}=7 x-12 \\
& x^{2}-7 x+12=0 \\
& (x-4)(x-3)=0 \\
& x=3,4
\end{aligned}
$$

$$
\begin{gathered}
(2) e^{2 x}\left(\frac{1}{e^{2}}\right)^{x} e^{-4 x}=e^{6} \\
e^{2 x} e^{-2 x} e^{-4 x}=e^{6} \\
2 x-2 x-4 x=6 \\
-4 x=6 \\
x=-\frac{3}{2}
\end{gathered}
$$

Find the zeros of $f(x)=x^{3}\left(4 e^{4 x}\right)+3 x^{2} e^{4 x}$ (factor what's in common for both terms)

$$
\begin{aligned}
& x^{3}\left(4 e^{4 x}\right)+3 x^{2} e^{4 x} \\
& x^{2} e^{4 x}(4 x+3) \\
& x=0 \text { does not produce zen } \\
& x=0,-3 / 4
\end{aligned}
$$

Find the zeros of $f(x)=12 x^{2} e^{2 x}-6 x e^{2 x}$

$$
x=0 \stackrel{6 x e^{2 k}}{\square}(2 x-1)
$$

does not produce

$$
\begin{aligned}
& \text { a zeno } \\
& x=0,1 / 2
\end{aligned}
$$

Algebra 5.3 hog Functions
Def of $\log _{a}: \log _{a} x=y$ same as $a^{y}=x$
\log form- $\log _{2} 8=y \quad$ exponential form- $2^{4}=8$
Change the following to exponential form

1) $\log _{5} 125=x \quad 5^{x}=125$
2) $\log _{3} x=2 \quad 3^{2}=x$
3) $\log _{a} 16=2 \quad a^{2}=16$

Change the following to \log form

1) $x^{3}=64 \quad \log _{9} 64=3$
2) $10^{5}=100,000 \quad \log _{10} 100,000=5 \mathrm{M} \log 100,000=5$
3) $e^{y}=2 \quad \log _{e} 2=y$ a $\ln 2=y$ (natural log)

Change the following to exponential foin 1

1) $\log _{100}=2 \quad \log _{10} 100=2 \quad 10^{20}=100$
2) $\ln x=5 \quad \log _{2} x=5 \quad\left(e^{5}+x\right)$
3) $\ln 3=x-1 \quad \log _{e} 3=x-1 \quad\left(e^{x-1}=3\right.$
ln $e=1$ always replace ln e with 1
$|n|=0$ alurup replace $\ln 1$ with 0 , same as $e^{0}=1$
$\log 10=1$ always replace $\log 10$ with 1
$\log _{a} 1=0$
$\operatorname{alg} 5,3$
Solve the following
0

$$
\begin{aligned}
& \log _{3} 81 \quad Q \log 10^{-7} \text { (3) } \log _{x} 64=3 \text { (9) } \log _{x} \frac{1}{64}=3 \\
& \log _{3} 81=y \quad \log _{10} 10^{-7} \quad x^{3}=64 \quad x^{3}=\frac{1}{64} \\
& 3^{y}=81 \quad 10^{y y}=10^{-7} \quad x=4 \quad x=\frac{1}{4} \\
& y=4 \quad y=-7
\end{aligned}
$$

B

$$
\begin{array}{cc}
\log _{3} \frac{1}{27} & \text { (6) } \ln ^{4} e^{4} \\
\log _{\frac{1}{27}}^{\frac{1}{27}}= & \ln e^{4}=y \\
3^{y}=\frac{1}{27} & e^{y}=e^{4} \\
y=-3 & y=4
\end{array}
$$

Solve for t

$$
\begin{array}{|l}
3 a^{t / 2}=10 \\
a^{t / 2}=10 / 3 \quad \text { (change to } \log \text { form) } \\
\log _{a} \frac{10}{3}=\frac{t}{2} \\
2 \log _{a} \frac{10}{3}=t \quad \text { (for ihrn } 2 * \log \left(a, \frac{10}{2}\right)
\end{array}
$$

Solve for x

$$
\begin{aligned}
& 4 \cdot 3^{x-2}=16 \\
& 3^{x-2}=4 \text { (change to log form) } \\
& \log _{3} 4=x-2 \\
& x=2+\log _{3} 4
\end{aligned}
$$

$\operatorname{alg} 5.3$
Solve for x

$$
\begin{gathered}
\log _{3}(x-7)=2 \\
3^{2}=x-7 \\
9+7=x \\
x=16
\end{gathered}
$$

Solve for x

$$
\begin{aligned}
& \log _{7} x=\log _{7}(6-x) \\
& x=6-x \\
& 2 x=6 \\
& x=3
\end{aligned}
$$

Solve for x

$$
\begin{aligned}
& \log x^{2}=-8 \\
& 10^{-8}=x^{2} \\
& \left(\frac{1}{10}\right)^{8}=x^{2} \\
& \left. \pm\left(\frac{1}{10}\right)^{4}=x \quad \text { (for iLrn } .0001,-.0001\right)
\end{aligned}
$$

Find $\log _{4} 8$

$$
\left\lvert\, \begin{aligned}
& \log _{4} 8=y \\
& 4^{4}=8 \\
& \left(2^{2}\right)^{y}=2^{3} \\
& 2^{2 y}=2^{3} \\
& 2 y=3 \\
& y=3 / 2
\end{aligned}\right.
$$

algetra 5.4 Plopenties of Logs

$$
\begin{aligned}
& \log _{a}(x y)=\log _{a} x+\log _{a} y \\
& \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
& \log _{a}\left(x^{c}\right)=c \cdot \log _{a} x
\end{aligned}
$$

Experssin terms of $x \& y$ segeraicly

$$
\begin{aligned}
& \text { (1) } \log _{3}(9 x)=\log _{3} 9+\log _{3} x=2+\log _{3} x \\
& \text { (2) } \log _{2}\left(\frac{16}{3}\right)=\log _{2} 16-\log _{2} y=4-\log _{2} y \\
& \text { (} \log \left(x^{3}\right)=3 \cdot \log x \\
& \text { (4) } \log _{5}\left(x^{2} y^{3}\right)=\log _{5} x^{2}+\log _{5} y^{3}=\left(\log _{5} x+3 \log _{5}-1\right. \\
& { }^{3} \ln \left(\frac{\sqrt{x}}{\sqrt[3]{y}}\right)=\ln \sqrt{x}-\ln \sqrt[3]{y}=\ln x^{1 / 2}-\ln y^{1 / 3}=\frac{1 / 2}{} \ln x-1 / 3 \ln y \\
& \ln ^{2} \sqrt[3]{y^{\frac{5}{7^{4}}}}=\ln \frac{x^{\frac{5}{3}}}{y^{\frac{3}{3}} z^{4 / 3}}=\ln x^{3 / 3}-\ln y^{\frac{7}{3}}-\ln x^{4 / 3}=\sqrt{\frac{5}{3} \ln x-\frac{1}{2} \ln y-\frac{4}{3} \ln z}
\end{aligned}
$$

Common Mistakes
$\log (x+y) \neq \log x+\log y$
$\log (x-y) \neq \log x-\log y$
$\log x+\log y=\log z \quad x+y \neq z$
Write the following as one logarithm

$$
\begin{aligned}
& \text { Q } \ln 10 x^{2} y^{3}-\ln x y^{5}=\ln \left(\frac{10 x^{2} y^{3}}{x y^{5}}\right)=\ln \left(\frac{10 x}{y^{2}}\right) \\
& 2 \ln x^{2}-\ln \left(\frac{1}{y}\right)^{4}-\ln (x y)^{3} \\
& \left.\ln \left(\frac{x^{2}}{4}\right)^{\frac{4}{4}(x y)^{3}}\right)=\ln \frac{x^{2}}{\frac{1}{y^{4} x^{3} y^{3}}}=\ln \left(\frac{1}{\frac{1}{y} x}\right)=\ln \left(\frac{y}{x}\right)
\end{aligned}
$$

aly 5.4
(B)

$$
\begin{aligned}
& 9 \log _{2} x-5 \log _{2}\left(\frac{1}{y}\right)-2 \log _{2}(x y) . \\
& \log _{2} x^{9}-\log _{2}\left(\frac{1}{y}\right)^{5}-\log _{2}(x y)^{2} \\
& \frac{\log _{2}\left(\frac{1}{y}\right)^{5}(x y)^{2}}{}=\log _{2} \frac{x^{7}}{\frac{1}{y^{5}} y^{2}}=\log _{2} \frac{x^{7}}{y^{3}}=\log _{2} x^{7} y^{3}
\end{aligned}
$$

Solve the equation $\log (x+2)-\log x=2 \log 4$

$$
\begin{aligned}
\log \left(\frac{x+2}{2}\right) & =\log 4^{2} \\
\log \left(\frac{x+2}{2}\right) & =\log 16 \\
\frac{x+2}{x} & =16 \\
x+2 & =16 x \\
2 & =15 x \\
x & =3 / 15
\end{aligned}
$$

Solve for Z

$$
\begin{aligned}
2 \log _{3} z & =3 \log _{3} 5 \\
\log _{3} z^{2} & =\log _{3} 5^{3} \\
\log _{3} z^{2} & =\log _{3} 125 \\
z^{2} & =125 \\
z & = \pm \sqrt{125}= \pm 5 \sqrt{5} \quad \text { (oveof these w urong, fos sout }-5 \sqrt{5} \text {) } \\
z & =5 \sqrt{5} \text {) }
\end{aligned}
$$

Olg 5.4
Solve for $x \log _{2} x+\log _{2}(x+2)=3$

$$
\begin{gathered}
\log _{2}(x(x+2))^{2}=3 \\
\log _{2}\left(x^{2}+2 x\right)=3 \\
2^{3}=x^{2}+2 x \\
8=x^{2}+2 x \\
x^{2}+2 x-8=0 \\
(x+4)(x-2)=0 \\
x=-4,2 \text { (canit te }-4) \\
x=2
\end{gathered}
$$

Solve for of

$$
\begin{aligned}
& \log _{5}(2 x-5)=\log _{5}(10)-\log _{5}(2) \\
& \log _{5}(2 x-5)=\log _{5}\left(\frac{1}{2}\right) \\
& \log _{5}(2 x-5)=\log _{5}(5) \\
& 2 x-5=5 \\
& 2 x=10 \\
& x=5
\end{aligned}
$$

Write the following in terms of baze 2

$$
\begin{array}{llll}
\text { (1) } & 1 & \log _{2}-2 & =1 \\
\text { (1) } & 3 & \log _{2} \frac{8}{2}=3 \\
\text { (3) } & 5 & \log _{2} \frac{32}{}=5 \\
\text { (4) } & 0 & \log _{2} \frac{1}{1}=0 \\
\text { (5) } & 4 & \log _{2} \frac{1}{16} & =-4 \quad\left(2^{-4}=\frac{1}{16}\right)
\end{array}
$$

Sohe for $x-\log _{2} x+3=\log _{2}(4 x-1) \quad\left\{\begin{array}{c}\log _{2}(8 x)=\log _{2}(4 x-1) \\ 8 x=4 x-1\end{array}\right.$
algebra 5.5 Solving Exp \& hog Functions

Solve for x

$$
\begin{aligned}
5^{-x} & =125 \\
5^{-x} & =5^{3} \leftarrow \text { same } \\
-x & =3 \\
x & =-3
\end{aligned}
$$

solve for x
$3^{x}=11 \Leftarrow$ we cant have the
$\ln 3^{3 x} x \ln 11$ pare base for this
$x \ln 3=\ln 11$
$x=\frac{\ln 11}{\ln 3}$
problem, we must
take natural \log of
both sides

Solve for x

$$
\begin{gathered}
2^{x-5}=7 \\
\ln 2^{x-5}=\ln 7 \\
(x-5) \ln 2=\ln 7 \\
x-5=\ln 7 \\
x=\frac{\ln 7}{\ln 2}+5
\end{gathered}
$$

Solve for $x \quad 3^{2 x}+6\left(3^{x}\right)=27$
use substitution -let $y=3 x$, and $y^{2}=\left(3^{x}\right)^{2}=3^{2 x}$

$$
3^{2 x}+6\left(3^{x}\right)=27
$$

$$
y^{2}+6 y=27
$$

$y^{2}+6 y-27=0$

$$
(y+9)(y-3)=0
$$

$y=-9,3$-we wont to know what xis, not y, Do plug y values in and solve.

$$
\begin{array}{rl}
y=3^{x} & y=3^{x} \\
-9 & =3^{x} \\
y=3^{x}
\end{array}
$$

$$
\text { nosolution } x=1
$$

alg 5.5
Solve for x

$$
\begin{aligned}
& 4^{x}+256 \cdot 4^{-x}=68 \\
& 4^{x}+256\left(\frac{1}{4} x\right)=68 \\
& 4^{x}\left(4^{x}+256\left(\frac{1}{4 x}\right)\right)=68(4 x) \text {, muctroty bethster } \\
& 4^{2 x}+256=68\left(4^{x}\right) \text { action 䜤 } \\
& 4^{2 x}-68\left(4^{x}\right)+256=0 \\
& \text { use substitution-let } y=4^{x}, y^{2}=4^{2 x} \\
& y^{2}-68 y+256=0 \\
& (y-64)(y-4)=0 \\
& y=64,4 \text {-we want to know what } x \text { is, } \\
& \text { So plug y valuein, and solve } \\
& \begin{array}{l}
y=4^{x} \\
64=4^{x}
\end{array} \\
& \begin{array}{l}
y=4^{x} \\
y=4^{x}
\end{array} \\
& x=3 \quad x=1 \\
& x=1,3
\end{aligned}
$$

$$
\begin{array}{|c}
\text { Solve for } x \quad \log x^{3}=(\log x)^{2} \quad \text { this } 6 \text { different } \\
3 \log x=(\log x)^{2} \quad \text { form } \log x^{2} \\
0=(\log x)^{2}-3 \log x \\
0=\log x(\log x-3)-(\text { factored } \log x) \\
\log x=\log x-3=0 \\
10^{\circ}=x \quad \log x=3 \\
1=x \quad 10^{3}=x \\
\quad x=1000 \quad x=1,1000 \quad
\end{array}
$$

$\operatorname{alg} 5.5$
Solve for x \& approx. to 2 decimal places

$$
\begin{aligned}
& \log \left(x^{2}+4\right)-\log (x+2)=2+\log (x-2) \\
& \log \left(x^{2}+4\right)-\log (x+2)-\log (x-2)=2 \\
& \log \left(\frac{x^{2}+4}{(x+2)(x-2)}\right)=2 \\
& \log \left(\frac{x^{2}+4}{x^{2}-4}\right)=2 \\
& 1020=\frac{x^{2}+4}{x^{2}-4} \\
& 100=\frac{x^{2}+4}{x^{2}-4} \\
& 100\left(x^{2}-4\right)=x^{2}+4 \\
& 100 x^{2}-400=x^{2}+4 \\
& 99 x^{2}=404 \\
& x^{2}=\frac{404}{45} \\
& x= \pm \sqrt{\frac{404}{5}} \\
& x= \pm 2.02 \text { (tass out the negative value) } x=2.02
\end{aligned}
$$

Solve for $x \quad 2^{5 x+3}=3^{2 x+1}$

$$
\begin{aligned}
& \ln 2^{5 x+3}=\ln 3^{2 x+1} \\
& (5 x+3) \ln 2=(2 x+1) \ln 3 \\
& 5 x \ln 2)+3 \ln 2)=2 x(\ln 3)+1(\ln 3) \\
& 5 x(\ln 2)-2 x(\ln 3)=\ln 3-3(\ln 2)-\text { sur son n side } \\
& x(5(\ln 2)-2(\ln 3))=\ln 3-3(\ln 2)-\text { factor the } x \\
& x=\frac{\ln 3-3(\ln 2)}{5(\ln 2)-2(\ln 3)} \\
& x=\frac{\ln 3-\ln 2^{3}}{\ln 2^{5}-\ln 3^{2}} \\
& x=\frac{\ln 3-\ln 8}{\ln 32-\ln 9} \\
& x=\ln (3) \\
& \ln \left(\frac{32}{5}\right)
\end{aligned}
$$

alg 5.5
Change of Base Formula ** not on test

$$
\log _{a} b=\frac{\log b}{\log a} \text { or } \frac{\ln b}{\ln a}
$$

app $\log _{2} 20=\frac{\log 20}{\log 2}=4.32$

$$
\begin{array}{r}
\operatorname{app} \frac{\frac{\log _{7} 64}{\log _{7} 4}=\frac{\frac{\log 64}{\log 7}}{\frac{\log 4}{\log 7}}=\frac{\log 64}{\log 7} \cdot \frac{\log 7}{\log 4}=\frac{\log 64}{\log 4}}{\approx} 10
\end{array}
$$

Guidelines for Solving Exponential or Logarithmic Equations
If you have a log equal to a number or a variable, change it to exponential form.
Ex: $\log _{2} \frac{1}{16}=\begin{aligned} & 2^{x}=\frac{1}{16} \\ & 2^{x}=2^{-4}\end{aligned}$

$$
x=-4
$$

Ex: $\log _{3} y_{y}^{2}=4 \begin{aligned} & 3^{4}=y \\ & x 1=y\end{aligned}$
Ex: $\log _{x} 64=3 \sqrt[3]{x^{3}}=\sqrt[3]{64}$

$$
x=4
$$

If you have a variable in your exponent, change it to logarithmic form.

$$
\begin{array}{rlrl}
5^{2 x-9}=5^{3} & 2^{3 x-1} & =2^{-1} \\
2 x-9 & =3 & 3 x-1 & =-1 \\
2 x=12 & \text { Ex: } 2^{3 x-1}=\frac{1}{2} & 3 x & =0 \\
x=6 & & x & =0
\end{array}
$$

Ex: $\quad 5^{2 x-9}=125$

If you have the same base on both sides of the equation, then simplify and set the exponents equal to each other.

Ex: $2^{x-3}=2^{5 x+13}$

$$
x-3=5 x+13
$$

$$
-4 x=16
$$

$$
x=-4
$$

$$
\text { Ex: } \begin{aligned}
\left(3^{2}\right)^{x} \cdot 3^{-x+1} & =\left(3^{-1}\right)^{3 x-4} \cdot 3^{2} \\
2 x-x+1 & =-3 x+4+2 \\
4 x & =5 \\
x & =5 / 4
\end{aligned}
$$

If you don't have the same base on both sides of the equation, then try to get everything into the same base. Then, simplify and set the exponents equal to each other.

$$
\text { Ex: } \begin{aligned}
(27)^{x} \cdot\left(\frac{1}{3}\right) & =(9)^{x-4} \cdot 3^{-2} \\
3^{3 x} \cdot 3^{-1} & =3^{2 x-8} \cdot 3^{-2} \\
3 x-1 & =2 x-8 \cdot 2 \\
x & =-9
\end{aligned}
$$

$$
\text { Ex: } \begin{aligned}
4^{-2} \cdot\left(16^{2 x}\right)^{3} & =8^{3 x-2} \cdot\left(\frac{1}{32}\right)^{-x} \\
2^{-4} \cdot 2^{24 x} & =2^{4 x-6} \cdot 2^{5 x} \\
-4+2 x & =9 x-6+5 x \\
10 x & =-2 \\
x & =-1 / 5
\end{aligned}
$$

If you don't have the same base on both sides of the equation, and you can't possibly get everything into the same base, then take the log or \ln of both sides.

Ex: $7^{3 x}=11$
Ex: $3^{x-2}=14$

$$
\ln 7^{3 x}=\ln 11
$$

$$
3 \times \ln 7=\ln 11
$$

$$
3 x=\frac{\ln !}{\ln !}
$$

$$
x=\frac{\ln 11}{3 \ln 17}
$$

$$
\begin{gathered}
\ln 3^{x \cdot 2}=\ln 14 \\
(x-2) \ln 3=\ln 14 \\
x-2=\frac{\ln 14}{\ln 3}=\frac{\ln 1}{\ln 3}+6
\end{gathered}
$$

If you have a radical (root) mixed in your equation, most of the time it helps to change it to a rational (fraction) exponent, and vice versa.

$$
\begin{aligned}
& \text { Ex: } \log _{5} \sqrt[3]{5}=x \log _{5} 5^{1 / 3}=x \\
& 5^{x}=5^{1 / 3} \\
& x=1 / 3
\end{aligned}
$$

$$
\begin{aligned}
& 2^{3}=x \\
& 8=x \\
& \text { Ex: } \ln \sqrt[4]{e^{3}}=x \ln e^{3 / 4}=x \\
& \log _{e} e^{3 / 4}=x \\
& e^{x}=e^{3 / 4} \\
& \text { If you have two logs of the same base set equal to one another, set the stuff in } \\
& x=2 / 4 \\
& \text { parenthesis (or that comes after the base) equal to each other. } \\
& \text { Ex: } \log _{2}(x-3)=\log _{2}(9-5 x) \\
& \text { Ex: } \ln \sqrt{x-3}=\ln 7 \\
& \text { Ex: } \log x^{2}=\log (6-x) \\
& x-3=9-5 x \\
& \sqrt{x-3}=7 \\
& x^{2}=6-x \\
& 6 x=13 \\
& x-3=41 \\
& x^{2}+x-6=0 \\
& \text { nosolution } \\
& x=52 \\
& (x+3)(x-2)=0 \\
& x=2,-3
\end{aligned}
$$

If you have several logs dancing around on both sides of the equation, try to get them all on one side and use your rules for logs.

$$
\begin{aligned}
& \text { Ex: } \log _{4}(x-2)=1-\log _{4}(x+2)+\log _{4} 3 \\
& \mathrm{Ex}_{2} 2 \log _{8} x+4 \log _{8} 2=\log _{8} x-2 \\
& \log _{4}(x-2)+\log _{4}(x+2) \cdot \operatorname{lig}_{4} 3=1, \\
& \begin{array}{l}
3=1 \\
74^{\prime}=\frac{x^{2}-4}{3} \\
12=x^{2}-4 \\
x^{2}=16 \\
x=4(x=4)
\end{array} \\
& \log _{8} x^{2}+\log _{8} x^{4}-\log _{8} x=-2 \\
& \log _{8}\left(16 x^{2}\right)-\log _{8} x=-2 \\
& \log _{4} \frac{(x-2 y(x+2)}{3}=1 \\
& \begin{array}{lll}
12=x^{2}-4 & \log _{8}\left(\frac{16 x^{2}}{x}\right)=-2 \\
x^{2}=16 & \log 816 x=-2 \\
x=4 & \frac{1}{64}=16 x \\
8=4 & \left.\frac{1}{124}=x\right)
\end{array} \\
& \begin{array}{l}
74^{\prime}=\frac{x^{2}-4}{3} \quad \log _{8}\left(16 x^{2}\right)-\log _{8} x=-2 \\
12=x^{2}-4 \quad \log _{8}\left(\frac{16 x^{2}}{x}\right)=-2 \\
x^{2}=16 \\
x=-4(x-4) \quad \begin{array}{l}
\frac{1}{64}=16 x \\
\frac{1}{124}=x
\end{array} \quad 8 \quad 8 x=-2
\end{array} \\
& \lim _{4}\left(\frac{x^{2}-4}{3}\right)=1 \\
& \text { If you have an equation that is quadratic in form, use substitution. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: } 5^{x}+125 \cdot\left(5^{-x}\right)=30 \quad(y-25)(y)=0 \\
& \text { Ex: } e^{2 x}+2 e^{x}-15=0 \\
& \text { hate } e^{x}=y \\
& \begin{array}{l}
5^{x}+125\left(\frac{1}{5 x} x=30\right. \\
5^{2 x}+125=30 \cdot 5^{x} \\
5^{2 x}-30,5^{x}+125=0 \\
l+y=5^{x} \\
y^{2}-30 y+125=0
\end{array}\left\{\begin{array}{l}
y=5,25 \\
y=5^{x} \\
x=1 \quad x=2 \\
x=1,2
\end{array}\right. \\
& \begin{array}{lll}
y^{2}+x y-15=0 & e^{x}=-5 & e^{x}=3 \\
(y+5)(y-3)=0 & \log _{e}-5=x & \log _{e} 3=x \\
y=-5 x=3 & e^{3}=5 & x=\ln 3
\end{array} \\
& y=-5 y=3 \\
& \text { © } 4 \\
& x=\ln 3
\end{aligned}
$$

And sometimes you just need to use some good ole factoring.

Ex: $\quad x^{2} e^{3 x}=7 x e^{3 x}$

$$
\begin{gathered}
x^{2} e^{3 x}-7 x e^{3 x}=0 \\
x e^{3 x}(x-7)=0 \\
x e^{3 x}=0 \quad x-7=0 \\
x=0 \quad x=7
\end{gathered}
$$

Ex:

$$
\begin{aligned}
& (\log x)^{4}=27 \log x \\
& (\log x)^{4}-27 \log x=0 \\
& \log x\left((\log x)^{3}-27\right)=0 \\
& \log x=0 \quad(\log x)^{3}-27=0 \\
& 10^{0}=x \quad(\log x)^{3}=27 \\
& x=1 \quad \log ^{2} x=7 \quad(x=1,1000)
\end{aligned}
$$

Algebra 9.1 Sytensis Equations
Solve the following syttensof equations wising oubstitution

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{y=\left(x^{2}+1\right.\right. \\
x+y=3
\end{array}\right. \\
& x+y=3 \Rightarrow x+x^{2}+1=3 \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \\
& x=-2,1 \\
& y=x^{2}+1 \\
& \Rightarrow y=(-2)^{2}+1 \\
& y=(1)^{2}+1 \\
& y=5 \quad y=2
\end{aligned}
$$

write you final answer as coordinates $(-2,5),(1,2)$ note: these points ore.
Solve the following system sol equations using substitution

$$
\begin{cases}s x-y^{3}=1 \Rightarrow \text { rewrite to set } x^{2} \text { by itself } \Rightarrow x=\left(y^{3}+1\right. \\ 2 x=9 y^{2}+2 \Rightarrow 2\left(y^{3}+1\right)=9 y^{2}+2 \Rightarrow 2 y^{3}+2=9 y^{2}+2 \\ & 2 y^{3}-9 y^{2}=0 \\ x=y^{3}+1 & y^{2}(2 y-9)=0 \\ x=(0)^{3}+1 \quad x=(9 / 2)^{3}+1 & y^{2}=0 \quad 2 y-9=0 \\ x=1 \quad x=\frac{729}{8}+1=\frac{737}{8} & y=0 \quad y=9 / 2\end{cases}
$$

$$
(1,0),\left(\frac{737}{8}, \frac{9}{2}\right)
$$

Solve the following optems of equations using substitution

$$
\left\{\begin{array}{l}
\left(x^{2}+y^{2}=-25\right. \\
\left.3 x+4 y=-25 \Rightarrow 4 y=-3 x-25 \Rightarrow y=-\frac{-3 x-25}{4}\right) \\
x^{2}+\left(\frac{-3 x-25}{4}\right)^{2}=25 \Rightarrow x^{2}+\frac{9 x+150 x+625}{16}=25 \Rightarrow 16 x^{2}+9 x^{2}+150 x+625=400 \\
25 x^{2}+150 x+225=0 \Rightarrow 25\left(x^{2}+6 x+9\right)=0 \Rightarrow 25(x+3)(x+3)=0 \Rightarrow x=-3 \\
y=\frac{-3 x-25}{4} y=\frac{-3(-3) \cdot 25}{4} y=\frac{-16}{4} y=4 \quad(-3,-4)
\end{array}\right.
$$

algelesa 9.1 cont
Solve the following apter of equations using substitution

$$
\left\{\begin{array}{l}
x y=2 \Rightarrow x=\left(\frac{2}{y}\right) \\
6 x-y+4=0 \\
6\left(\frac{1}{y}\right)-y+4=0 \\
12-y^{2}+4 y=0 \\
-y^{2}+4 y+12=0 \\
y^{2}-4 y-12=0 \\
(y-6)(y+2)=0 \\
y=(6,-2
\end{array}\right.
$$

$$
\begin{array}{ll}
x=\frac{2}{y} \\
x=\frac{7}{6} & x=\frac{2}{-2} \\
x=13 & x=-1
\end{array}
$$

$$
(1 / 3,6),(-1,-2)
$$

Solve the following syptemg equations using substitution

Inconsistent syptein
no solution

Dependent syptem

$$
\begin{aligned}
& \left(\left\{\begin{array}{l}
x^{2}+3 y^{2}=13 \\
x^{2}-y^{2}=12 \Rightarrow x^{2}=y^{2}+12
\end{array}\right.\right. \\
& \begin{array}{l}
y^{2}+12+3 y^{2}=13 \\
4 y^{2}=1
\end{array}, \begin{array}{l}
x^{2}=y^{2}+12 \\
x^{2}=\left(y^{2}\right)^{2}+12
\end{array} \\
& \begin{array}{l}
y^{2}+12+3 y^{2}=13 \\
4 y^{2}=1
\end{array}, \begin{array}{l}
x^{2}=y^{2}+12 \\
x^{2}=\left(y_{2}\right)^{2}+12
\end{array} \\
& 4 y^{2}=1 \\
& y^{2}=1 / 4 \\
& y= \pm 1 / 2 \\
& \left(\frac{7}{2}, \frac{1}{2}\right),\left(\frac{7}{2},-\frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}\right)\left(-\frac{7}{2},-\frac{1}{2}\right) \\
& x^{2}=(1 / 2)^{2}+12 \quad x^{2}=\left(-\frac{1}{2}\right)^{2}+12 \\
& x^{2}=1 / 4+4 \frac{4}{4} \quad x^{2}=1 / 4+\frac{48}{4} \\
& x^{2}=4 \frac{4}{4} \\
& x^{2}=4 / 4 \\
& x= \pm \frac{7}{2} \quad x= \pm \frac{7}{2}
\end{aligned}
$$

algebra 9.2 Sytenes of finer Equations in Tue Variables
Solving by elimination - multiply orceor bath equation, bes any number that will eliminate either $x_{i} y$, when both equations are added together.
(1) $\left\{\begin{array}{l}5 x-8 y=11 \\ x+8 y=7\end{array}\right.$ Luckily, the $-8 y$ and the $+8 y$ eliminate $x+8 y=7$
$6 x+0=18$ each other, when adding the equations $6 x+0=18$ together.

$$
6 x=18
$$

$$
\begin{gathered}
x=3 \quad x+8 y=7 \quad 3+8 y=7 \quad 8 y=4 \quad y=4 / 8=1 / 2 \\
(3,1 / 2)
\end{gathered}
$$

$$
\begin{aligned}
& 135 \begin{array}{ll}
5 x-6 y=10<\text { multi } 2 & 10 x-12 y=20 \\
2 x+7 y=1<m u l t-5 & -10 x-35 y=-5
\end{array} \\
& \begin{aligned}
(2 x+7 y=1<\text { malt }-5 \quad-10 x-35 y & =-5 \\
-47 y & =15
\end{aligned} \\
& 2 x+7\left(-\frac{15}{47}\right)=1 \\
& 2 x-\frac{105}{47}=1 \\
& 2 x=1+\frac{105}{47} \\
& 2 x=\frac{152}{47} \\
& x=\frac{76}{47}
\end{aligned}
$$

$$
\begin{align*}
& 2 x-16=-4 \\
& 2 x=12 \tag{6,2}\\
& x=6
\end{align*}
$$

Algebra 9.2 cont

$$
\left\{\begin{array}{l}
59 x-24 y=15 \quad 9 x-24 y=15 \\
(-3 x+8 y=7 \quad \text { (must by } 3)-\frac{9 x+24 y=21}{0=36 \text { false }}
\end{array} \Longleftrightarrow \neq\right. \text { two parallel! }
$$

历ernosolution forilun: inconoistant
Applied Problems)
a factory makes desks and chairs. Each desk takes 12 hour to make, and each chain takes 5 hours to make. a look coot $\$ 175$ each, and a chair costs $\$ 95$ each. Qi f their $10 \$ 5085$ amd 329 labor hows available, how much g each can be made to we the full a mont y hours t mo ne. let $d=\#$ of doss let $c=\#$ o chairs

$$
\begin{aligned}
& \text { hours: }\{12 d+5 c=329 \text { (neut } \text { meta) }-228 d-95 c=-6251 \\
& \text { morley: }\left\{175 d+95 c=5085 \quad \frac{175 d+95 c}{}=5085\right. \\
& 12(22)+5 c=329 \\
& 264+5 c=329 \\
& 5 c=65 \quad 22 \text { desks \& } 13 \text { chairs } \\
& c=13
\end{aligned}
$$

algebra 9.2 cont
Two bleach solutions have been made, one with 15\% 1 leach, another with 25\% bleach. How much should be combined from each to have 20 gallons 222% solution?

$$
\begin{array}{ll}
\text { let } a=\text { ant on } 15 \% \text { solution } \\
\text { out } b=\text { amt }
\end{array} \quad\left\{\begin{array}{l}
a+b=20 \\
15 a+25 b=
\end{array}\right.
$$

$$
\text { let } b=\text { amt of } 25 \% \text { solution } \quad(.15 a+.25 b=.22(20)
$$

4 gallons of 25% solution, 6 gallons of 15\% solution
A witch plumping up child un for eating w giving out Chocolate 5 E cream puffs. The chocolates has 34 grams D sugar \& 17 grams of fat. The cream puffs has 27 gram B sugar $q 16$ gram of fat. How many of each should She feed the kids Do that they consume 1668 gram of sugar and 849 gramo of fat.
let $C=\#$) chocolates sugar: $\left\{\begin{array}{l}34 c+27 p=1668 \\ 17 c+16 p=594\end{array}\right.$ let $p=\#$ if puffs fat: $\{17 c+16 p=894$

$$
\begin{aligned}
& 17 c+16 p=849 \\
& 17 c+16(24)=849 \\
& 17 c+384=849 \\
& 17 c=510
\end{aligned} \quad \begin{array}{r}
34 c+27 p=1668 \\
-34 c-32 p=-1788 \\
-5 p=-120 \\
p=20
\end{array}
$$

$$
c=30
$$

24 cream puff $s, 30$ chocolates
algebra 9.5 System of Ineariquations w/ More than 2 Variables a Ka Sowing Soptems Using Matrices

$$
\begin{array}{rrrr}
\text { no } & x-3 y=1 & (-2)-2 x+6 y=-2 & x-3 y=1 \\
20 & 2 x+4 y=7 & 2 x+4 y=7 & x-3(1 / 2)=1 \tag{5}\\
10 y=5 & x-3 / 2=1 \\
y & y=1 / 2 & x=5 / 2
\end{array}
$$

The sarre peoblein using matrices

EX

$$
\left\{\begin{array}{l}
x+3 y-z=-3 \\
3 x-y+2 z=1 \\
2 x-y+z=-1
\end{array}\left[\begin{array}{ccc|c}
1 & 3 & -1 & -3 \\
3 & -1 & 2 & 1 \\
2 & -1 & 1 & -1
\end{array}\right]-2 R 1+R_{1}+R_{3}\left[\begin{array}{ccc|c}
1 & 3 & -1 & 3 \\
0 & -10 & 5 & 10 \\
0 & -7 & 3 & 5
\end{array}\right]-10 R 3\right.
$$

Operations you can use m matrices

1. Multiply on divide a now ty number
2. Interchange rows (we prefer having a 1 in top $4 t$ conner) 3. Add two now s together to replace a wow.
algebra 9.5 cont
EX

$$
\begin{align*}
& {\left[\begin{array}{l}
4 x-y+3 z=6 \\
-8 x+3 y-5 z=-6 \\
5 x-4 y=-9
\end{array}\left[\begin{array}{ccc|c}
4 & -1 & 3 & 6 \\
-8 & 3 & -5 & -6 \\
5 & -4 & 0 & -9
\end{array}\right] 2 R 1+R 2\left[\begin{array}{ccc|c}
4 & -1 & 3 & 6 \\
0 & 1 & 1 & 6 \\
5 & -4 & 0 & -9 R 1
\end{array}\right] 4 R 3\right.} \\
& \left.\left[\begin{array}{ccc|c}
-20 & 5 & -15 & -30 \\
0 & 1 & 1 & 6 \\
0 & -16 & 0 & -36
\end{array}\right] R 1+R 3\right]\left[\begin{array}{ccc|c}
-20 & 5 & -15 & -30 \\
0 & 1 & 1 & 6 \\
0 & -11 & -15 & -66
\end{array}\right]\left[\begin{array}{ccc|c}
\frac{R 1}{-}
\end{array}\left[\begin{array}{cccc}
4 & -1 & 3 & 6 \\
0 & 1 & 1 & 6 \\
0 & -11 & -15 & -66
\end{array}\right] \| R 2+R 3\right. \\
& \rightarrow 4 x-y+3 z=6 \\
& \begin{array}{ll}
7 y+z=6 & 4 x-6+3(0)=6 \\
y+(0)=6 & 4 x=12
\end{array} \\
& 4-136 \\
& \xrightarrow{4-136} \longrightarrow \longrightarrow \\
& z=0 \quad y=6 \tag{3,6,0}\\
& x=3
\end{align*}
$$

, 10
goal
Ex $\left\{\begin{array}{l}x+3 y-3 z=-5 \\ \\ 2 x-y+z=-3 \\ -6 x+3 y-3 z=4\end{array}\left[\begin{array}{ccc|c}1 & 3 & -3 & -5 \\ 2 & -1 & 1 & -3 \\ -6 & 3 & -3 & 4\end{array}\right]-2 R 1+R 2\left[\begin{array}{ccc|c}1 & 3 & -3 & -5 \\ 0 & -7 & 7 & 7 \\ 0 & & & \\ 0 & 21 & -21 & -26\end{array}\right] 3 R 2+R 3\right.$
goat
nosolution

Algebra 9.5 cont.
EX $\left[\begin{array}{ccc|c}2 & 1 & 1 & 0 \\ 1 & -2 & -2 & 0 \\ 1 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{ccc|c}1 & -2 & -2 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & -2 R \mid+R 2\end{array}\right]-|R|+R 3\left[\begin{array}{ccc|c}1 & -2 & -2 & 0 \\ 0 & 5 & 5 & 0 \\ 0 & 3 & 3 & 0\end{array}\right]-3 R 2+5 R 3$

$$
\Rightarrow 5 y+5 z=0 \quad x-2(-z)-2(z)=0
$$

goal

$$
\Rightarrow x-2 y-2 z=0
$$

$0=0 \quad y=-z \quad x=0 \quad((0,-z, z)$
True (It means ' z ' io a free variable,
it can be anything it wants,)
e) $\left\{\begin{array}{l}x+y=3 \\ x-z=5 \\ x+z=2\end{array}\left[\begin{array}{ccc|c}1 & 1 & 0 & 3 \\ 1 & 0 & -1 & 5 \\ 0 & 1 & 1 & 2\end{array}\right]\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 0 & -1 & 5\end{array}\right]-\left\lvert\, R 1+R 3\left[\begin{array}{ccc|c}1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 2\end{array}\right] R 2+R 3\right.\right.$
goal $10004 \rightarrow 0=4$ False 110 Solution
algebra 9.8 Determinants on $n \times n$ Matice
$\frac{|r| \text { Matar }}{A=[2]} \operatorname{det} A=|A|=2$
2×2 Matrix

$$
\begin{array}{r}
A=\left[\begin{array}{l}
a_{11} a_{12} \\
a_{21}, a_{22}
\end{array}\right] \quad \operatorname{det} A=|A|=a_{1} \cdot a_{22}-a_{12} \cdot a_{21} \\
(\operatorname{cosen} \text { multholy })
\end{array}
$$

Ex $A=\left[\begin{array}{ll}-5 & 4 \\ -3 & 2\end{array}\right] \quad(A)=(-5)(2)-(4)(-3)=-10+12=$ (2)
$E x A=\left[\begin{array}{cc}6 & -4 \\ -3 & 2\end{array}\right] \quad|A|=(6)(2)-(-4)(-3)=12-12=(0)$
EX $A=\left[\begin{array}{cc}c & d \\ -d & c\end{array}\right] \quad A=(c)(c)-(d)(-d)=c^{2}+d^{2}$
$\frac{3 \times 3 \text { Matur } x}{A=\left[a_{1} a_{2} a_{2}\right.}$

algebra 9.8 cont.
Ex $A=\left[\begin{array}{ccc}-5 & 4 & 1 \\ 3 & -2 & 7 \\ 2 & 0 & 6\end{array}\right]$

$$
\begin{aligned}
|A| & =-5\left|\begin{array}{c}
-27 \\
-0^{7} \mid
\end{array}\right|-\left.4\right|_{26} ^{37}\left|+\left|\left.\right|_{2-2} ^{3-2}\right|\right. \\
& =-5(-12-0)-4(18-14)+1(0+4) \\
& =60-16+4=(48)
\end{aligned}
$$

Ex
4×4 Matrix

$$
\begin{array}{rl}
A & =\left[\begin{array}{ccc}
3 & -1 & 2
\end{array}\right] \\
4 & 0
\end{array}-350
$$

$$
=(-216
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -5 & 1 \\
-3 & 1 & 6 \\
4 & -2 & 3
\end{array}\right] \\
& |A|=2|-23|+5\left|-\frac{-3}{4} \frac{6}{3}\right|+||-5-2| \\
& =2(3+12)+5(-9-24)+1(6-4) \\
& =2(15)+5(-33)+2=-133
\end{aligned}
$$

Algebra 9.9 Properties of Determinants
I) If you interchange two rows in anlatix. you must change the sign in the determinant.
a)) you multiply/ divide a now fy a number, then you must multiplyidivide the determinate by the numbles!
3.) Def you multiply a row by a number and add it to another now, youldont change a thing!
Ex orle $A=\left[\begin{array}{ccc}2 & 4 & 6 \\ 1 & 5 & 0 \\ 3 & -2 & 5\end{array}\right]\left[=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & 6 \\ 3 & -2 & 5\end{array}\right]\right.$

$$
\begin{aligned}
& \operatorname{det}(A)=1\left|-\frac{4}{2}\right|-5\left|\frac{1}{3} 5\right|+0 \\
& =160+12]-5(10-18) \\
& =32-5(-8)=72
\end{aligned}
$$

change the sign! -72

$$
\begin{aligned}
& =1(1(1-0)-5(-8-5)-12(0+15) \\
& =12-5(-13)-150 \\
& =12+65-150=-73 \\
& =10
\end{aligned}
$$

divide by $10!\left[-\frac{31}{10}\right]$

Algebra 9.9
Crames Ruly - take a Ayptem of equations, tind D, Q_{1}, D_{y}, D_{z}

$$
x=\frac{|D x|}{|D|} \quad y=\frac{\left|D_{y}\right|}{|D|} \quad z=\frac{|D z|}{|D|}
$$

Ex Solve eping Cramevs Rule

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 x+5 y=13 \\
3 x+y=-4
\end{array}\right. \\
& \text { 坔 } 4 \text { thand }
\end{aligned}
$$

Special Cases

$$
E X \quad x=\frac{36}{3}
$$

$$
y=\frac{3}{3}
$$

$$
z=\frac{3}{0}
$$

denominaters of zeromean $\left(\frac{\text { inconsistand }}{\text { no solutian }}\right.$
EX

$$
\begin{aligned}
& x=\frac{0}{O} \\
& y=\frac{0}{0} \\
& z=\frac{0}{0}
\end{aligned} \Rightarrow \text { all vakues of zero mean. infinately many sol.) }
$$

Algebra 9.9
Ex Solve Using Charmers Rule

$$
\begin{aligned}
& \left.\left\{\begin{array}{l}
\begin{array}{ll}
x+3 y-z=-3 \\
3 x-y+2 z=1 \\
2 x-y+z=-1
\end{array} \\
D_{y}=\left[\begin{array}{ccc}
1 & -3 & -1 \\
3 & 1 & 2 \\
2 & -1 & 1
\end{array}\right] \quad D_{z}=\left[\begin{array}{ccc}
1 & 3 & -1 \\
3 & -1 & 2 \\
-1 & -1 & 1
\end{array}\right] \\
1
\end{array}\right] \quad \begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 1 \\
2 & -1 & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.D_{y}=\left[\begin{array}{ccc}
1 & -3 & -1 \\
3 & 1 & 2 \\
2 & -1 & 1
\end{array}\right]-3 R 1+R 2\left[\begin{array}{llll}
-2 R 1+R 3
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & -1 \\
0 & 1 & 5 \\
0 & 5 & 3
\end{array}\right]\left(D_{y}\right)=1 \right\rvert\, \begin{array}{cc}
10 & 5 \\
5 & 3
\end{array}\right)=1(30-25)=5 \\
& D_{z}=\left[\begin{array}{ccc}
1 & 3 & -3 \\
3 & -1 & 1 \\
2 & -1 & -1
\end{array}\right]-3 R 1+R 2\left[\begin{array}{lll}
-3 R 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -3 \\
0 & -10 & 10 \\
0 & -7 & 5
\end{array}\right]\left(D_{z} \mid=1\right.
\end{aligned}
$$

$$
x=\frac{\left|g_{x}\right|}{|1|}=\frac{-10}{5}=-2
$$

$$
\begin{equation*}
y=\frac{101 \mid}{101}=\frac{5}{5}=1 \tag{-2,1,4}
\end{equation*}
$$

$$
\left.z=\frac{\mid 01}{|D|} \right\rvert\,=\frac{20}{5}=4
$$

Algebra 10.1 Infinite Seguences a Summation Votetion
Find the firsf thee terme if the following osequemes \& the 8th tom
18

$$
\begin{aligned}
& \{5-2 n\} \text { for } n=1,2,3 \ldots \\
& a_{1}=5-2(1)=3 \\
& a_{2}=5-2(2)=1 \\
& a_{3}=5-2(3)=-1 \\
& a_{8}=5-2(8)=-11
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \left\{1+(-1)^{n+1}\right\} \\
& a_{1}=1+(-1)^{1+1}=1+1=2 \\
& a_{2}=1+(-1)^{2+1}=1+(-1)^{3}=1-1=0 \\
& a_{3}=1+(-1)^{3+1}=1+(-1)^{2}=1+1=2 \\
& a_{8}=1+(-1)^{8+1}=1+(-1)^{9}=1-1=0
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \left\{\frac{n^{n}}{n^{2}+2}\right\} \\
& a_{1}=\frac{2}{1+2}=\frac{3}{3} \\
& a_{2}=\frac{2^{2}}{2,2}=\frac{4}{4,2}=\frac{4}{6}=\frac{2}{3} \\
& a_{3}=\frac{23}{23+2}=\frac{3}{42}=\frac{9}{12} \\
& a_{8}=\frac{28}{8+2}=\frac{2552}{64+2}=\frac{256}{66}=\frac{128}{33}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \left\{(-1)^{n}(2 n+1)\right\} \\
& a_{1}=(-1)^{\prime}(2(1)+1)=-3 \\
& a_{2}=(-1)^{2}(2(2)+1)=5 \\
& a_{3}=(-1)^{3}(2(3)+1)=-7 \\
& a_{8}=(-1)^{8}(2(2)+1)=17
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \{7\} \\
& a_{1}=7, a_{2}=7, a_{3}=7, a_{8}=7
\end{aligned}
$$

OLaphia 10.1
Match
a_{n} is the number of decimal places in $(0.1)^{n}$ a_{n} wt the number of positive integers less than

Recursively dined sofuoncer - you must use previous term a to find the next term?

Find the third term in each of the following

$$
\begin{aligned}
& \text { (1) } a_{1}=2 \quad a_{k+1}=3 a_{k}+5 \\
& a_{2}=3(2)+5=11 \\
& \left.a_{3}=3(1)\right)+5=38
\end{aligned}
$$

$$
a_{3}=3(10)=30
$$

$k+1=2$
(2) $a_{1}=5 \quad a_{k+1}=(k+1) a_{k}$

$$
\begin{aligned}
& a_{2}=2(5)=10 \\
& =3(10)=\sqrt{301}
\end{aligned}
$$

$\mathrm{k}+2=3$

$$
\begin{aligned}
& (3) a_{1}=2 \quad a_{k+1}=\left(a_{k}\right)^{k+2} \\
& a_{2}=(2)^{3}=8 \\
& a_{3}=(8)^{4}=8^{4}=4096
\end{aligned}
$$

(4)

$$
\begin{aligned}
& a_{1}=2 \quad a_{2}=3 \quad a_{k+1}=-2 a_{k}+a_{k-1} \\
& a_{3}=-2 a_{2}+a_{1}=-2(3)+2=-6+2=-4 \\
& a_{4}=-2 a_{3}+a_{2}=-2(-4)+3=8+3=11
\end{aligned}
$$

Fibonacci sequence $\quad 1,2,3,5,13,2 / \ldots$.

$$
\begin{aligned}
& a_{1}=1 \quad a_{2}=2 \quad a_{k+1}=a_{k}+a_{k-1} \\
& a_{3}=2+1=3, \quad a_{4}=3+2=5, a_{3}=5+3=8, a_{6}=8+5=13
\end{aligned}
$$

Algebra 10,1
Sequence of Partial Sums
Find the first thee e terms of the sequence of partial sums for the following.
(1)

$$
\begin{array}{ll}
\{5-2 n\} & \\
a_{1}=5-2(1)=3 & s_{1}=3 \\
a_{2}=5-2(2)=1 & s_{2}=3+1=4 \\
a_{3}=5-2(3)=-1 & s_{3}=3+1-1=3
\end{array}
$$

(2)

$$
\begin{array}{ll}
\{3+1 / 2 n\} & \\
a_{1}=3+\frac{1}{2}(1)=\frac{7}{2} & s_{1}=\frac{7}{2} \\
a_{2}=3+\frac{12}{2}(2)=4 & s_{2}=\frac{7}{2}+4=\frac{15}{2} \\
a_{3}=3+\frac{1}{2}(3)=9 / 2 & s_{3}=\frac{7}{2}+4+\frac{9}{2}=\frac{24}{2}=12
\end{array}
$$

(3) $\{n\}$

$$
\begin{array}{ll}
a_{1}=1 & s_{1}=1 \\
a_{2}=2 & s_{2}=1+2=3 \\
a_{3}=3 & s_{3}=1+2+3=6 \\
a_{4}=4 & s_{4}=1+2+3+4=10 \\
a_{5}=5 & s_{5}=1+2+3+4+5=15 \\
& \text { 11 }
\end{array}
$$

algebra 10.1
Summations.
$\sum_{k=1}^{5}$ means oummation from $k=1$ to 5
(0) $\sum_{k=1}^{5}(2 k-7)=-5-3-1+1+3=-5$
$2 \sum_{k=1}^{4}\left(k^{2}-5\right)=-4-1+4+11=10$
(3) $\sum_{k=1}^{b}\left[1+(-1)^{k}\right]=0+2+0+2+0+2=6$
(4) $\sum_{k=0}^{4} K(K-2)=0-1+0+3+8=10$
(5) $\sum_{k=1}^{5} 3=3+3+3+3+3=15$
(6) $\sum_{k=0}^{5} 3=3+3+3+3+3+3=18$
(7) $\}_{k=3}^{7}-4=-4-4-4-4-4=-20$
(8) $\sum_{k=1 / 8} 1 / 3=1 / 3(29+1)=1 / 3(30)=10$

Algebra 10.2 Auithmatic Sequences

$$
\begin{array}{r}
\text { Ex, }-3,4,11,18, \text {,ere } d=7(7 n-10) \text {-definition } \\
a_{1}=7(1)-10=-3
\end{array}
$$

Ex $53,47,4135, \ldots \quad d=6 \quad-6 n+59$

$$
a_{1}=-6(1)+59=-6+59=53
$$

General Formula for finding the $n^{\text {th }}$ tern o an arithmetic sequence

$$
a_{n}=a_{1}+(n-1) d
$$

EX

$$
\begin{aligned}
& 10,-2,-14,-26, \ldots \\
& a_{1}=10 \text { and } d=-12 \\
& a_{n}=10+(n-1)-12=10-12 n+12=22-12 n
\end{aligned}
$$

Ex Find the $5^{\text {th }}, 10^{\text {th }}$, and $n^{\text {th }}$ term of the arithmetic sequence

$$
\begin{aligned}
& 7,11,15,19, \ldots, \quad a_{1}=7 \text { and } d=4 \\
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=7+(n-1) 4 \\
& a_{n}=7+4 n-4 \\
& a_{n}=3+4 n \\
& a_{5}=3+4(5)=23 \\
& a_{10}=3+4(10)=43
\end{aligned}
$$

Ex Find the $8^{\text {th }}, 20^{\text {th }}$, $n^{\text {th }}$ term of the arithmatic sequence

$$
\begin{aligned}
& -4,-0.5,3,6.5, \ldots \quad a_{1}=-4 \text { and } d=3.5 \\
& a_{n}=a_{1}+(n-1) d=-4+(n-1) 3.5=-4+3.5 n-3.5=-7.5+3.5 n \\
& a_{8}=-7.5+3.5(8)=-7.5+28=20.5 \\
& a_{20}=-7.5+3.5(20)=-7.5+70=6.5
\end{aligned}
$$

algebra 10.2
Ex y Given $a_{4}=15, a_{11}=43$ find a_{n}
one solution (slope) $d=\frac{43-15}{1104}=\frac{22}{2}=4$
if $a_{4}=15$, then $a_{3}=11, a_{2}=7, a_{1}=3$
another soluten $a_{4}=a_{1}+(4-1)(4)$

$$
\begin{aligned}
& 15=a_{1}+12 \\
& a_{1}=3 \\
& a_{n}=3+(n-1) 4=3+4 n-4=(4 n-1)
\end{aligned}
$$

EX Given $a_{8}=41, a_{9}=46$, find a_{n}

$$
\begin{array}{ll}
d=5 & \\
a_{8}=a_{1}+(8-1) 5 & a_{n}=6+(n-1) 5 \\
41=a_{1}+35 & a_{n}=6+5 n-5 \\
a_{1}=6 & a_{n}=1+5 n
\end{array}
$$

$$
s_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Ex $a_{n}=43-3 n$ Find S_{26}

$$
\begin{aligned}
S_{26} & =\frac{26}{2}\left(a_{1}+a_{26}\right) \\
& =13((43-3(1))+(43-3(26))) \\
& =13(40-35) \\
& =65
\end{aligned}
$$

algebra 10.2
Ex Find the sum of the arith mantic sequance that satisfies the following conditions, $a_{7}=-\frac{8}{3}, d=-\frac{3}{3}, n=15$

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{7}=a_{1}+(7-1)(-2 / 3) \\
& -\frac{9}{3}=a_{1}-\frac{12}{3} \\
& a_{1}=4 / 3 \\
& a_{n}=4 / 3+(n-1)(-2 / 3) \\
& a_{n}=4 / 3-2 / 3 n+2 / 3 \\
& a_{n}=2-2 / 3 n \\
& S_{15}=\frac{15}{2}\left(a_{1}+a_{15}\right) \\
& S_{15}=\frac{15}{2}(4 / 3-8) \\
& S_{15}=\frac{15}{2}\left(-\frac{20}{3}\right) \\
& S_{15}=5(-10) \\
& S_{15}=-50
\end{aligned}
$$

Ex Express the sum in terms of summation notation

$$
\begin{array}{ll}
11+16+21+26 & a_{n}=5 n+6 \\
\sum_{n=1}^{4}(5 n+6)
\end{array}
$$

Ex Express the sum in terms of summation notation

$$
\begin{aligned}
& -4,-9,-14,-19,-24 \\
& d=-5 \quad a_{1}=-4 \quad a_{n}=-5 n+1 \quad \sum_{n=1}^{5}(-5 n+1)
\end{aligned}
$$

Algebra 10.2
EX Express the sum intern of summation notation

$$
\begin{aligned}
& 1+3+5+\ldots+73 \\
& d=2 \quad a_{1}=1 \quad a_{n}=2 n-1 \\
& 2 n-1=73 \\
& 2 n=74 \\
& n=37
\end{aligned} \sum_{n=1}^{37} 2 n-181 . \begin{aligned}
&
\end{aligned}
$$

Ex Express the sum in terms of summation notation

$$
3 / 7+6 / 11+9 / 5+1 / 9
$$

numerator: $d=3 \quad a_{1}=3 \quad a_{n}=3 n$
denominator: $d=4 \quad a_{1}=7 \quad a_{n}=4 n+3$

$$
\sum_{n=1}^{4} \frac{3 n}{4 n+3}
$$

Ex $\sum_{n=5}^{n} 2 n+3$

$$
\frac{(5)\left(a_{5}+a_{15}\right)}{2}=\frac{15(13+44)}{2}=\frac{15(54)}{2}=\frac{810}{2}=405
$$

$\left(19^{-5}\right) E X$
EX $\sum_{n=3}^{12} 5-2 n$

$$
\frac{(10)\left(a_{3}+a_{12}\right)}{2}=\frac{10(-1-19)}{2}=\frac{10(-20)}{2}=\frac{-200}{2}=-100
$$

iLrn 10.2 Pout
Find the number of terms in the arithmetic sequence with the given conditions:

$$
\begin{aligned}
& a_{1}=8, d=1 / 4, \quad s=-132 \\
& s_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& s_{n}=\frac{n}{2}\left(-8+a_{1}+(n-1) d\right) \\
& -132=\frac{11}{2}\left(-8-8+(n-1) \frac{1}{4}\right) \\
& -132=\frac{n}{2}\left(-16+\frac{1}{4 n}-1 / 4\right) \\
& -132=\frac{n}{2}\left(-\frac{65}{8}+\frac{n^{2}}{8}\right) \\
& -1056=-65 n+n^{2} \\
& n^{2}-65 n+1056=0 \\
& (n-32)(n-33)=0 \quad \text { try } 32,33
\end{aligned}
$$

Ln 10,2 Pouts
a contest will have five cash prizes totalling $\$ 10,000$, with a $\$ 200$ difference between successive prizes. Find the first prize.

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{n}=\frac{n}{2}\left(a_{1}+a_{1}+(n-1) d\right) \\
& 10,000=\frac{5}{2}\left(2 a_{1}+(5-1)(200)\right) \\
& 0,000=\frac{5}{2}\left(2 a_{1}+800\right) \\
& \vdots \\
& a_{1}=1600
\end{aligned}
$$

$a_{s} \&$ first place, since these are in successive order

$$
\begin{aligned}
a_{5} & =1600+(5-1) 200 \\
& =1600+800=2400
\end{aligned}
$$

10.3 Geometric Sequences

Geometric Sequence: This sequence has a common ratio (r), or a value that is multiplied by one term to get the next term.
Ex: $2,-6,18,-54,162 \ldots \quad r=-3 \quad$ Ex: $1, \frac{x}{3}, \frac{x^{2}}{9}, \frac{x^{3}}{27}, \ldots \quad r=\frac{X}{3}$
Ex: 99, 33, 11, $\frac{11}{3}, \ldots \quad r=\frac{1}{3} \quad$ Ex: $1, \frac{-x}{3}, \frac{x^{2}}{9}, \frac{-x^{3}}{27}, \ldots \quad r=\frac{-x}{3}$
Ex: $\frac{2}{25}, \frac{2}{5}, 2,10,50, \ldots \quad \quad \quad$ Ex: $10,10^{2 x-1}, 10^{4 x-3}, 10^{6 x-5}, \ldots r=\frac{10^{2 x-1}}{10^{1}}=10^{2 x-2}$
Ex: $4,-6,9,-13.5, \ldots \quad r=-1.5 \quad$ Ex: $1,-\sqrt{3}, 3,-3 \sqrt{3}, \ldots \quad r=-\sqrt{3}$
$=-3 / 2$
Let's derive a formula for finding the nth term of a geometric sequence by looking at an example.

Ex: 2, 6, 18, 54, 162, $\ldots \quad r=3$ talk about the formula in reference to the first term

$$
2 \cdot 1,2 \cdot 3,2 \cdot 9,2 \cdot 27,2 \cdot 81, \ldots \text { it looks like the formula will be } a_{n}=2 \cdot 3^{n-1}
$$

$$
2 \cdot 3^{0}, 2 \cdot 3^{1}, 2 \cdot 3^{2}, 2 \cdot 3^{3}, 2 \cdot 3^{4}, \ldots
$$

In general, $a_{n}=a_{1} \cdot r^{n-1}$ (Memorize this!)
Now, find a_{n} for the first 8 examples.

1. $a_{n}=2 \cdot(-3)^{n-1}$
2. $a_{n}=99(1 / 3)^{n-1}$
3. $a_{n}=\frac{2}{25}(5)^{n-1}$
4. $a_{n}=4(-3 / 2)^{n-1}$:
5. $a_{n}=1\left(\frac{x}{3}\right)^{n-1}$
6. $a_{n}=1\left(-\frac{x}{3}\right)^{n-1}$
7. $a_{n}=10\left(10^{2 x-2}\right)^{n-1}$
8. $a_{n}=1(-\sqrt{3})^{n-1}$

If you are asked to find a later term, find a_{n} and plug in your specific value for n.
Ex: Find the $9^{\text {th }}$ term of the geometric sequence 99, 33, 11, $\frac{11}{3}, \ldots a_{1}=99 \quad r=\frac{1}{3} \quad n=9$
$a_{A}=99(1 / 3)$

$$
\begin{aligned}
& a_{A}=99(1 / 3 \\
& a_{9}=\frac{99}{656}=\frac{11}{729}
\end{aligned}
$$

Ex: Find the $6^{\text {th }}$ term of geometric sequence $1, \frac{-x}{3}, \frac{x^{2}}{9}, \frac{-x^{3}}{27}, \ldots \quad a_{1}=1 \quad r=-\frac{x}{3} n=6$

$$
a_{6}=1\left(-\frac{x}{3}\right)^{5}=\frac{-x^{5}}{243}
$$

Ex: Find the $12^{\text {th }}$ term of the geometric sequence whose first two terms are 4 and 12. $a_{1}=4 \quad 1=3 \quad n=12$ $a_{12}=4(3)^{11}$
$=4(177147)$
$=708588$

Sometimes you need to find \mathbf{r}, or a_{1}, or another term based upon two separated terms.
Ex: Find all possible values of r for a geometric sequence given $a_{3}=3$ and $a_{6}=81 \quad \frac{81}{3}=27 \Rightarrow \sqrt[3]{27}=3$

$$
r=3
$$

Ex: Find all possible values of r for a geometric sequence given $a_{2}=5$ and $a_{9}=55$

$$
\frac{55}{5}=11 \Rightarrow 2 \sqrt{11}= \pm \sqrt{11}
$$

Ex: The third term of a geometric sequence is 5 , and the sixth term is -40 . Find the $8^{\text {th }}$ term.

$$
\begin{aligned}
-\frac{40}{5} & =-8 \Rightarrow \sqrt[3]{-8}=-2 \quad r=-2 \\
a_{3} & =a_{1}(-2)^{3-1} \\
5 & =a_{1}(4) \Rightarrow a_{1}=5 \quad a_{n}=\frac{5}{4}(-2)^{n-1} \quad a_{8}=\frac{5}{4}(-2)^{7}=-160
\end{aligned}
$$

Sums: The sum of the first n terms is, $S_{n}=a_{1} \frac{1-r^{n}}{1-r}$
Ex: Find the sum: $\sum_{k=1}^{8} 2 \cdot 3^{k} \quad \begin{aligned} & a_{1}=2 \cdot 3^{\prime}=6 \quad S_{g}=6 \frac{1-3^{8}}{1-3}=6 \frac{-6560}{-2}=3,19,680 \\ & a_{1}=(-2)=-1\end{aligned}$
Ex: Find the sum: $\sum_{k=1}^{10}(-2)^{k} \begin{aligned} & a_{1}=(-2)^{4}=-2 \\ & r=-2\end{aligned} \quad S_{10}=-2 \frac{1-(-2)^{10}}{1-(-2)}=-2 \frac{-1023}{3}=682$
Infinite Geometric Sequence: The sum starts with the first term and keeps on going! If $|r|<1$, the the sum is $S=\frac{a_{1}}{1-r}$

Ex: Find the sum of the infinite geometric series: $2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\ldots \quad r=\frac{1}{3} \quad S=\frac{2}{1-7}=\frac{2}{3}=2 \cdot \frac{3}{2}=3$
Ex: Find the sum of the infinite geometric series: $200-100+50-25+\ldots T=-\frac{1}{2} \quad S=\frac{200}{1+\frac{1}{2}}=200 \cdot \frac{2}{3}=\frac{400}{3}$

Ex: Find the sum of the infinite geometric series: $1+\frac{3}{2}+\frac{9}{4}+\frac{27}{8}+\ldots r=\frac{3}{2}$

Ex: Find the sum of the infinite geometric series: $1.5+0.015+0.00015+\ldots \quad \gamma=.01$

$$
\begin{aligned}
& \text { cries: } 1.5+0.015+0.00015+\ldots r=.01 \\
& S=\frac{1.5}{1-.01}=\frac{1.5}{49}=\frac{150}{99}=\frac{50}{33}
\end{aligned}
$$

You can also use and infinite geometric series to find the rational representation (fraction) of a repeating decimal.

Ex: Find the rational number represented by the repeating decimal: 0. $\overline{3}$

$$
\begin{array}{ll}
a_{1}=.3 & r=.1 \\
a_{2}=.03 & 5=\frac{.3}{|-.|}=\frac{.3}{.9}=\frac{3}{9}=\frac{1}{3} \\
a_{3}=.003 &
\end{array}
$$

Ex: Find the rational number represented by the repeating decimal: $0 . \overline{73}$

$$
\begin{aligned}
& a_{1}=.73 \\
& a_{2}=.0073 \\
& a_{3}=.000073
\end{aligned} \quad 1=.01 \quad 5=\frac{.73}{1-.01}=\frac{.73}{.99}=\frac{73}{99}
$$

Ex: Find the rational number represented by the repeating decimal: $15 . \overline{2}$

$$
\begin{array}{ll}
a_{1}=.2 \\
a_{2}=.02 & r=.1 \\
& S=\frac{.2}{1-.1}=\frac{.2}{.9}=\frac{2}{9} \quad 15+\frac{2}{9}=\frac{137}{9}
\end{array}
$$

$$
a_{3}=.002
$$

$$
\begin{aligned}
& \text { Ex: Find the rational number represented by the repeating decimal: } 2.417 \\
& \begin{array}{l}
a_{1}=.017 \\
a_{2}=.00017 \\
a_{3}=.0000017 \\
\text { applications }
\end{array} \quad \leq=\frac{.017}{1-.01}=\frac{.017}{.99}=\frac{17}{990} \quad 2.4+\frac{17}{990}=\frac{2393}{990}
\end{aligned}
$$

Ex: The yearly depreciation of a certain machine is 25% of it's value at the beginning of the year. If the original cost of the machine is $\$ 5000$, what is it's value in 7 years?

$$
\begin{array}{ll}
r=.75 & a_{7} \\
=500(.7 .5)^{7-1} \\
a_{1}=5000 & \\
a_{n}=5000(.25)^{n-1} & \\
& =\$ 889.89
\end{array}
$$

Ex: A rubber ball is dropped from a height of 60 ft . If it rebounds approximately one-half the distance after each fall, use an infinite geometric series to approximate the total distance the ball travels.

$$
\begin{aligned}
& G_{n}=60\left(\frac{1}{2}\right)^{n-1} S=60+60=120 \\
& a_{n}=30\left(\frac{1}{2}\right)^{n-1} \rightarrow S=\frac{30}{1-\frac{1}{2}}=\frac{30}{\frac{1}{2}}=30(2)=60 \\
& \text { total } 180 \mathrm{ft}
\end{aligned}
$$

algebra 10.5 the Binomial Theorem

$$
\begin{aligned}
\text { Ex }(2 x-3 y)^{3} & =(2 x-3 y)(2 x-3 y)(2 x-3 y) \\
& =\left(4 x^{2}-12 x y+9 y^{2}\right)(2 x-3 y) \\
& =8 x^{3}-24 x^{2} y+18 x y^{2}-12 x^{2} y+36 x y^{2}-27 y^{3} \\
& =8 x^{3}-36 x^{2} y+54 x y^{2}-27 y^{3}
\end{aligned}
$$

Binomial Them

$$
(x+a)^{n}=\sum_{k=0}(k) x^{k} a^{n-k}
$$

Ex: you have 6 friends tut only 4 can he in your wedding. How many combinations can you have?
row surv in $\rightarrow\binom{6}{4}=15$
Ex Expand $(2 x-3 y)^{3}$ using Binarrial them.

$$
\frac{(x-3 y)^{3}=\frac{1}{2}(2 x)^{3}(-3 y)^{2}+3(3 x)^{2}(-3 y)^{\prime} 3(2 x)^{2}(-3 y)^{2}+1(2 x)(-3)^{3}}{=8 x^{3}-36 x^{2} y+54 x^{2} y^{2}-27 y^{3}}
$$

alg 10.5

14641

$$
\begin{array}{|l}
\text { Ex }\left(\frac{1}{2} c+d^{3}\right)^{4} \\
=\frac{1}{\left(\frac{1}{c} c\right)^{4}\left(d^{3}\right)^{0}+4\left(\frac{1}{2} c\right)^{3}\left(d^{3}\right)^{1}+6\left(\frac{1}{2} c\right)^{2}\left(d^{3}\right)^{2}+4\left(\frac{1}{2} c\right)^{1}\left(d^{3}\right)^{3}+1\left(\frac{1}{2} c\right)\left(c^{3}\right)^{4}} \\
=\frac{1}{1} c^{4}+4\left(\frac{1}{8}\right) c^{3}+6\left(\frac{1}{4}\right) c^{2}\left(d^{9}\right)+2 c d^{4}+d^{12} \\
=
\end{array}
$$

5101051

$$
\begin{array}{|l}
\text { Ex }(2 x-y)^{5} \\
= \\
=1(2 x)^{5}+5\left(2 x^{4}(-y)^{1}+10(2 x)^{3}(-y)^{2}+10(2 x)^{2}(-y)^{3}+5(2 x)^{2}(-y)^{4}+1(-y)^{5}\right. \\
=32 x^{5}+5\left(16 x^{4}\right)(-y)+10\left(8 x^{3}\right)\left(y^{2}\right)+10\left(4 x^{2}\right)\left(-y^{3}\right)+10 x y^{4}-y^{5} \\
=32 x^{5}-80 x^{4} y+80 x^{3} y^{2}+40 x^{2} y^{3}+10 x y^{4}-y^{5}
\end{array}
$$

Ex Find the term that has $a^{2} b$ in $(3 a-4 b)^{3}$

$$
3(3 a)^{2}(-4 b)^{\prime}=3\left(9 a^{2}\right)(-4 b)=-108 c^{2} b
$$

